Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Engineering (Beijing) ; 6(10): 1115-1121, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32837748

RESUMEN

Masks have become one of the most indispensable pieces of personal protective equipment and are important strategic products during the coronavirus disease 2019 (COVID-19) pandemic. Due to the huge mask demand-supply gap all over the world, the development of user-friendly technologies and methods is urgently needed to effectively extend the service time of masks. In this article, we report a very simple approach for the decontamination of masks for multiple reuse during the COVID-19 pandemic. Used masks were soaked in hot water at a temperature greater than 56 °C for 30 min, based on a recommended method to kill COVID-19 virus by the National Health Commission of the People's Republic of China. The masks were then dried using an ordinary household hair dryer to recharge the masks with electrostatic charge to recover their filtration function (the so-called "hot water decontamination + charge regeneration" method). Three kinds of typical masks (disposable medical masks, surgical masks, and KN95-grade masks) were treated and tested. The filtration efficiencies of the regenerated masks were almost maintained and met the requirements of the respective standards. These findings should have important implications for the reuse of polypropylene masks during the COVID-19 pandemic. The performance evolution of masks during human wear was further studied, and a company (Zhejiang Runtu Co., Ltd.) applied this method to enable their workers to extend the use of masks. Mask use at the company was reduced from one mask per day per person to one mask every three days per person, and 122 500 masks were saved during the period from 20 February to 30 March 2020. Furthermore, a new method for detection of faulty masks based on the penetrant inspection of fluorescent nanoparticles was established, which may provide scientific guidance and technical methods for the future development of reusable masks, structural optimization, and the formulation of comprehensive performance evaluation standards.

2.
J Aerosol Med Pulm Drug Deliv ; 29(5): 393-405, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26745146

RESUMEN

BACKGROUND: Lytic mycobacteriophage D29 has the potential for tuberculosis treatment including multidrug-resistant strains. The aims of this study are to investigate deposition and distribution of aerosolized phage D29 particles in naive Balb/C mice, together with pharmacokinetics and evaluation of acute lung injury. METHODS: Pharmacokinetics and BALF (bronchoalveolar lavage fluids) were analyzed after administration of phage D29 aerosols by endotracheal route using Penn-century aerosolizer; Collison 6-jet and Spinning top aerosol nebulizers (STAG) were used to generate phage aerosols with different particle size distributions in nose-only inhalation experiments. After exposure, deposited amounts of phage D29 particles in respiratory tracts were measured, and deposition efficiencies were calculated. A typical path deposition model for mice was developed, and then comparisons were made between predictions and experimentally measured results. RESULTS: Approximately 10% of aerosolized phages D29 reached lung of mouse for pulmonary delivery, and were completely eliminated until 72 h after administration. In contrast, about 0.1% of intraperitoneal injected phages reached the lung, and were almost eliminated at 12 h time point. The inflammation was hardly observed in lung according to the results of BALF analysis. The CMADs (count median aerodynamic diameters) of generated aerosol by Collison and STAG nebulizer were 0.8 µm and 1.5 µm, respectively. After nose-only exposure, measured deposition efficiencies in whole respiratory tract for 0.8 and 1.5 µm phage particles were below 1% and 10%, respectively. Predictions of the computer deposition model compared fairly well with experimentally measured results. CONCLUSIONS: This is the first systematic study of phage D29 aerosol respiratory challenge in laboratory animals. It provides evidence that aerosol delivery of phage D29 is an effective way for treating pulmonary infections caused by Mycobacterium tuberculosis. This research will also provide important data for future inhalation experiments.

3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 46(1): 67-9, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22490144

RESUMEN

OBJECTIVE: To evaluate the protective performance of a positive pressure bio-protective clothing against viral aerosol. METHODS: The suspension of indicating virus phage Phi-X174 was made for viral aerosol generating in a hermetic cabin. The diameter of viral aerosol particles were measured with a aerodynamics size analyzer. By adjusting the inner humidity of the cabin, the protective efficiency of the positive pressure bio-protective clothing against viral aerosol in high and low windshield conditions was determined with Andersen six-stage air sampler sampling and plage forming unit (PFU) counting, respectively. RESULTS: The mass median diameter of Phage Phi-X174 aerosol particles was about 0.922 µm and the background concentration is beyond 2 × 104 particles/m³. The protective efficiency of the clothing against phage Phi-X174 aerosol particles was above 99.9% under different test conditions with the range of viral aerosol concentration between 0 - 23 PFU/m³. Airflow (P = 0.84), environment humidity conditions (P = 0.33) and sampling time (P = 0.07) did not affect the protective efficiency statistically. CONCLUSION: The positive pressure bio-protective clothing provided a relatively high efficiency against phage Phi-X174 aerosol regardless of airflow rate, environment humidity and sampling time.


Asunto(s)
Ropa de Protección , Aerosoles , Bacteriófago phi X 174 , Bioterrorismo/prevención & control , Diseño de Equipo , Humedad , Exposición Profesional/prevención & control , Presión , Factores de Tiempo , Virosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA