Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674810

RESUMEN

Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.


Asunto(s)
Durapatita , Ingeniería de Tejidos , Humanos , Durapatita/química , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Portadores de Fármacos
2.
J Biomater Appl ; 37(6): 1086-1101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063429

RESUMEN

Titanium (Ti) and Ti-based alloy materials are ideal brackets that restore bone defect, and the mechanism of related genes inducing bone mesenchymal stem cells (BMSCs) to osteogenic differentiation is currently a hot research topic. In order to screen key genes of BMSCs during the osteogenic expression process, we acquired data sets (GSE37237 and GSE84500) which were in the database Gene Expression Omnibus (GEO). Investigations on differentially expressed genes (DEGs) and their enrichment of functions were conducted. We constructed relative protein-protein interaction (PPI) network by using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized the expression of DEGs with Cytoscape. A total of 279 DEGs were discerned, which could be divided into 177 down regulated genes and 102 up regulated genes. In addition, the DEGs' enrichment and pathways included regulation of actin cytoskeleton, inflammatory mediator regulation of transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPAR) pathway, cell cycle, Rheumatoid arthritis, mitogen-activated protein kinases (MAPK) signaling pathway and Ras signaling pathway ect. It showed that 10 notable up regulated genes were mainly in AMP-activated protein kinase (AMPK) pathway. Then we used a technology named surface mechanical attrition treatment (SMAT) to prepare gradient nanostructured (GNS) surface Ti and seeded well-growing BMSCs on the surface of SMAT Ti and native pure Ti. Cell Counting Kits-8 (CCK-8), apoptosis experiment, immunofluorescence technology and staining experiments for alka-line phosphatase (ALP) and alizarin red staining (ARS) were used to research the proliferation, adhesion and differentiation ability of BMSCs seeded on SMAT Ti compared with native pure Ti. We used quantitative real-time PCR (qRT-PCR) technology so as to verify the expression of the most significant 5 genes. In summary, these results indicated novel point of views into candidate genes and potential mechanism for the further study of BMSCs' behaviors seeded on SMAT Ti.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Osteogénesis/genética , Titanio/farmacología , Células Cultivadas , Huesos , Diferenciación Celular/genética
3.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35055231

RESUMEN

Nano-hydroxyapatite/collagen (nHAC) is a new type of bone tissue engineering scaffold material. To speed up the new bone formation of nHAC, this study used concentrated growth factor (CGF) and nHAC in combination to repair rabbit mandibular defects. nHAC/CGF and nHAC were implanted into rabbit mandibles, and X-ray, Micro-CT, HE and Masson staining, immunohistochemical staining and biomechanical testing were performed at 8, 16 and 24 weeks after surgery. The results showed that as the material degraded, the rate of new bone formation in the nHAC/CGF group was better than that in the nHAC group. The results of the HE and Masson staining showed that the bone continuity or maturity of the nHAC/CGF group was better than that of the nHAC group. Immunohistochemical staining showed that OCN expression gradually increased with time. The nHAC/CGF group showed significantly higher BMP2 than the nHAC group at 8 weeks and the difference gradually decreased with time. The biomechanical test showed that the compressive strength and elastic modulus of the nHAC/CGF group were higher than those of the nHAC group. The results suggest that nHAC/CGF materials can promote new bone formation, providing new ideas for the application of bone tissue engineering scaffold materials in oral clinics.

4.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(3): 295-302, 2021 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-33719236

RESUMEN

OBJECTIVE: To explore the effects of concentrated growth factor (CGF) combined with mineralized collagen (MC) materials on the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs) and their osteogenic effects in vivo, and to provide a theoretical basis for the combined application of CGF and MC materials in bone defect regeneration and repair. METHODS: CGF was prepared from venous blood of healthy volunteers, and then CGF extracts (CGFe) were prepared. In vitro experiment: human BMSCs (hBMSCs) were divided into 4 groups. Groups A, B, and C were cultured with α-MEM medium [containing 10% fetal bovine serum (FBS) and 1% double antibody] containing 2%, 5%, and 10%CGFe, respectively; group D was cultured with α-MEM medium (containing 10%FBS and 1% double antibody) without CGFe. Scanning electron microscopy was used to observe the effect of CGFe on cell adhesion. Cell counting kit 8 (CCK-8) was used to detect the effect of CGFe on cell proliferation. After osteogenic induction, alkaline phosphatase (ALP) activity was detected and Western blot was performed to detect osteopontin (OPN) expression. In vivo experiment: Eighteen New Zealand big-eared rabbits were used to prepare circular bone defect models on the left and right mandibles, and implant CGF gel (prepared from autologous venous blood)+MC material (volume ratio 1∶1, experimental group) and simple MC material (control group), respectively. At 4, 8, and 12 weeks after operation, 6 rabbits were sacrificed respectively to obtain materials, and Micro-CT scanning was performed to observe the formation of new bone and material degradation in vivo. RESULTS: In vitro experiments: Scanning electron microscopy showed that the cells of groups A, B, and C spread better on MC materials than group D, with more pseudopodia. CCK-8 method showed that different concentrations of CGFe could promote cell proliferation, and the absorbance ( A) value of cells cultured for 2, 3, 5, and 7 days was in the order of group C>group B>group A>group D, the differences were significant ( P<0.05). ALP activity test showed that its activity was proportional to the osteogenic induction time and CGFe concentration ( P<0.05). Western blot analysis of osteogenic induction culture for 14 days showed that the relative expression of OPN protein in groups A, B, and C was significantly higher than that in group D, and the higher the CGFe concentration, the higher the relative expression of OPN protein ( P<0.05). In vivo experiment: Micro-CT observation showed that the new bone formation and material degradation of the experimental group were better than those of the control group at 4, 8, and 12 weeks after operation. Quantitative detection showed that the volume of new bone volume, new bone volume fraction, trabeculae number, and trabecular thickness of the experimental group were significantly higher than those of the control group at each time point, the residual material volume, residual material volume fraction, and trabecular separation were significantly lower than those of the control group, all showing significant differences ( P<0.05). CONCLUSION: CGF can effectively promote the adhesion, proliferation, and osteogenic differentiation of BMSCs on MC materials, and 10%CGFe has the most significant effect. The combined application of CGF and MC material can significantly promote bone formation in vivo.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colágeno , Péptidos y Proteínas de Señalización Intercelular , Conejos
5.
Sci Rep ; 10(1): 14364, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873894

RESUMEN

Respiratory diseases, including pulmonary fibrosis, silicosis, and allergic pneumonia, can be caused by long-term exposure to dental prosthesis grinding dust. The extent of the toxicity and pathogenicity of exposure to PMMA dust, Vitallium dust, and dentin porcelain dust differs. The dust from grinding dental prosthesis made of these three materials was characterized in terms of morphology, particle size, and elemental composition. The adverse effects of different concentrations of grinding dust (50, 150, 300, 450, and 600 µg ml-l) on RAW264.7 macrophages were evaluated, including changes in cell morphology and the production of lactate dehydrogenase (LDH) and reactive oxygen species (ROS). The dust particles released by grinding dental prosthesis made of these materials had different morphologies, particle sizes, and elemental compositions. They also induced varying degrees of cytotoxicity in RAW264.7 macrophages. A possible cytotoxicity mechanism is the induction of lipid peroxidation and plasma membrane damage as the dust particles penetrate cells. Therefore, clinicians who regularly work with these materials should wear the appropriate personal protection equipment to minimize exposure and reduce the health risks caused by these particulates.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Porcelana Dental/toxicidad , Prótesis Dental , Polvo/análisis , Macrófagos/efectos de los fármacos , Polimetil Metacrilato/toxicidad , Vitalio/toxicidad , Animales , Porcelana Dental/química , Odontólogos , Ratones , Microscopía Fluorescente , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Tamaño de la Partícula , Neumonía por Aspiración/inducido químicamente , Polimetil Metacrilato/química , Fibrosis Pulmonar/inducido químicamente , Células RAW 264.7 , Silicosis/etiología , Vitalio/química
6.
J Biomed Mater Res A ; 108(9): 1824-1833, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32388898

RESUMEN

Titanium (Ti) and Ti-based alloys are widely used in the manufacture of dental and orthopedic implants. However, how to improve their osteogenic differentiation ability is still a key issue to be resolved. In this study, gradient nanostructured surface (GNS) samples were prepared by surface mechanical grinding treatment, and coarse-grained (CG) samples were obtained by recrystallization annealing, making sure that the two kinds of specimens had similar roughness. Then, human amniotic mesenchymal stem cells (hAMSCs) were cocultured with the two kinds of Ti to investigate the material effects on the cellular functions. The results demonstrated that the grains with size ~56 nm were formed on the surface of the GNS Ti, and the grain size gradually increases from the sample surface to interior. Compared to the CG samples, the GNS ones could make the adhesion effect of the hAMSCs better, and promote the cell proliferation and osteogenic differentiation more significantly, the preliminary mechanism of which might be due to their specific nanostructure, the thicker oxide layer formed on their surface and the enhanced hardness. Our results indicated that the gradient nanostructured Ti materials could enhance both osteogenic differentiation and mechanical properties, which may possess broader applications in bone tissue engineering and clinical implanting.


Asunto(s)
Materiales Biocompatibles/química , Células Madre Mesenquimatosas/efectos de los fármacos , Nanoestructuras/química , Osteogénesis/efectos de los fármacos , Titanio/química , Amnios/citología , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Propiedades de Superficie , Titanio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...