Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38734890

RESUMEN

Pullulan can not only provide a source of organic carbon but also has excellent properties. However, current research is mostly limited to the physical properties of the high molecular-weight components of pullulan, and little is known of the application of its low molecular-weight components. This study was designed to explore the impact of the pre-soaking of radish seeds in a pullulan solution on seed germination and subsequent seedling growth under salt stress conditions. Pullulan soaking was found to enhance the germination rates of radish seeds subjected to salt stress, while also enhancing the aboveground growth of radish seedlings. Pullulan soaking resulted in increases in chlorophyll, soluble protein, and soluble sugar concentrations in the leaves of these seedlings, together with greater peroxidase activity and root activity as well as decreases in Na+ and malondialdehyde concentrations. This provides an important reference for the application of pullulan in plant protection.

2.
Cardiol J ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742666

RESUMEN

BACKGROUND: The growth of mitral leaflets (MLs) adaptive to left ventricluar (LV) remodeling has been observed. However, the elasticity of MLs upon mechanical stimuli would be supposed if it shrinks with LV reverse remodeling (LVRR). MATERIAL AND METHODS: Patients with idiopathic recent-onset dilated cardiomyopathy (RODCM) (n = 82) and 50 matched normal controls (NC) were prospectively enrolled. Echocardiography was performed at baseline and 6 months of follow-up for the anterior and posterior mitral leaflet (AML and PML) length, mitral annular dimension (MAD), and tenting height (TH). LVRR was measured as a ≥ 15% reduction in LV end-diastolic volume (LVEDV). RESULTS: After 6 months, LVRR was achieved in 69.5% of patients. The AML (28 ± 3 vs. 26 ± 3 mm, p = 0.004) and PML (19 ± 4 vs. 17 ± 3 mm, p < 0.001) decreased in length, as well as the MAD (31 ± 5 vs. 28 ± 5 mm, p = 0.001) and TH (10 ± 3 vs. 8 ± 2 mm, p < 0.001). Compared with the NC group, the AML and PML of the RODCM group were 16.7% and 35.7% longer at baseline and remained 8.3% and 21.2% longer at follow-up, respectively. The change in AML or PML correlated moderately with that in LVEDV (r = 0.487, p < 0.001; r = 0.516, p < 0.001, respectively). The AML and PML length decreased in the LVRR (+) subgroup (AML, 28 ± 3 vs. 26 ± 3 mm, p = 0.001; PML, 20 ± 4 vs. 16 ± 3 mm, p < 0.001), but remained the same in the LVRR (-) subgroup (27 ± 4 vs. 28 ± 4 mm, p = 0.318; 17 ± 3 vs. 17 ± 3 mm, p = 0.790). CONCLUSIONS: Enlarged MLs could reverse accompanied by LV reverse remodeling. This study provided the other facet of ML plasticity adaptive to mechanical stretching.

3.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627904

RESUMEN

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Asunto(s)
Neoplasias de la Mama , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Trastornos del Movimiento , Humanos , Femenino , Ciclofosfamida/efectos adversos , Antraciclinas/uso terapéutico , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Antibióticos Antineoplásicos , Doxorrubicina/farmacología , Neoplasias de la Mama/patología , Trastornos del Movimiento/tratamiento farmacológico
4.
Heliyon ; 10(5): e26936, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468920

RESUMEN

Due to its advantages of having a high power-to-weight ratio and being energy-efficient, the electro-hydraulic servo pump control system (abbreviated as EHSPCS) is frequently employed in the industrial field, such as the electro-hydraulic servo pump control (EHSPC) servomotor for steam turbine valve regulation control. However, the EHSPCS has strong nonlinearity and time-varying features, and the factors that cause system performance degradation are complex. Once a system failure occurs, it may lead to serious accidents, causing serious casualties and economic losses. To address the above issues, a system health assessment method based on LSTM-GRNN-ANN (LGA) deep neural network is proposed in this paper. Firstly, with oil volume gas content, servo motor air-gap flux density, and system leakage coefficient as the health assessment performance indicators, a health assessment performance index system for the EHSPCS is built, Furthermore, the system performance index threshold is set. Secondly, an LGA deep neural network is constructed by combining LSTM, GRNN and ANN, and a deep neural network based on the LGA is used to create an EHSPCS health assessment model. Subsequently, system feature parameter extraction, algorithm design, and parameter debugging are carried out. Finally, an EHSPCS experimental platform is established, typical system failure simulation experiments are designed, and comparative experimental analysis is conducted. The experimental findings demonstrate that the average accuracy of the system health assessment model based on the LGA deep neural network suggested in this paper is 96.37%, compared to 89.84%, 87.99% for LSTM and GRNN, which validates the accuracy of the system health assessment model based on the LGA deep neural network.

5.
Genomics ; 116(2): 110803, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290592

RESUMEN

N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.


Asunto(s)
Endometriosis , ARN Largo no Codificante , Femenino , Humanos , Animales , ARN Largo no Codificante/genética , Transcriptoma , Endometriosis/genética , Adenosina , Metilación , Mamíferos
6.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255925

RESUMEN

As the kynurenine pathway's links to inflammation, the immune system, and neurological disorders became more apparent, it attracted more and more attention. It is the main pathway through which the liver breaks down Tryptophan and the initial step in the creation of nicotinamide adenine dinucleotide (NAD+) in mammals. Immune system activation and the buildup of potentially neurotoxic substances can result from the dysregulation or overactivation of this pathway. Therefore, it is not shocking that kynurenines have been linked to neurological conditions (Depression, Parkinson's, Alzheimer's, Huntington's Disease, Schizophrenia, and cognitive deficits) in relation to inflammation. Nevertheless, preclinical research has demonstrated that kynurenines are essential components of the behavioral analogs of depression and schizophrenia-like cognitive deficits in addition to mediators associated with neurological pathologies due to their neuromodulatory qualities. Neurodegenerative diseases have been extensively associated with neuroactive metabolites of the kynurenine pathway (KP) of tryptophan breakdown. In addition to being a necessary amino acid for protein synthesis, Tryptophan is also transformed into the important neurotransmitters tryptamine and serotonin in higher eukaryotes. In this article, a summary of the KP, its function in neurodegeneration, and the approaches being used currently to target the route therapeutically are discussed.


Asunto(s)
Trastornos del Conocimiento , Quinurenina , Animales , Triptófano , Aminoácidos , Inflamación , Mamíferos
7.
Biomed Pharmacother ; 164: 114998, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301137

RESUMEN

Prolonged exposure to UV light can lead to photo-ageing of the skin. Therefore, the development and application of anti-photoaging drugs is urgent. In this study, we co-loaded apigenin (Apn) and doxycycline (Doc), a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), into flexible liposomes to exert anti-photoaging effects by combating oxidative stress, anti-inflammation, reducing the activation of MMPs and preventing collagen loss. The results showed that we prepared a flexible liposome (A/D-FLip) containing Apn and Doc. Its appearance, particle size and Zeta potential were normal and it had good encapsulation efficiency, drug loading, in vitro release and transdermal efficiency. In cellular experiments, A/D-FLip could inhibit oxidative stress damage, reduce inflammatory factors and decrease the activation of MMPs in Human immortalized keratinocytes (HaCaT) cells; in animal experiments, A/D-FLip could inhibit skin damage and reduce skin collagen loss by decreasing the activation of MMPs, thus inhibiting skin photoaging in mice. In conclusion, A/D-FLip has good anti-photoaging effects and it has the potential to become an effective skin care product or drug against UV damage and skin photoaging in the future.


Asunto(s)
Liposomas , Envejecimiento de la Piel , Animales , Ratones , Humanos , Liposomas/farmacología , Apigenina/farmacología , Doxiciclina/farmacología , Piel , Colágeno/farmacología , Metaloproteinasas de la Matriz , Rayos Ultravioleta/efectos adversos
8.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373002

RESUMEN

Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 µmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 µmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 µmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.


Asunto(s)
Antioxidantes , Camellia sinensis , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Antioxidantes/metabolismo , Fotosíntesis , Camellia sinensis/metabolismo , Clorofila/metabolismo , Té/metabolismo , Hojas de la Planta/metabolismo
9.
Hortic Res ; 10(6): uhad090, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37342541

RESUMEN

Tea plant (Camellia sinensis) is an important cash crop with extensive adaptability in the world. However, complex environmental factors force a large variation of tea quality-related components. Caffeine is essential for the formation of bitter and fresh flavors in tea, and is the main compound of tea that improves human alertness. Continuous strong light stimulation was observed to cause caffeine reduction in tea leaves, but the mechanism is not clear. In this study, the response of tea plant to light intensity was analysed mainly by multi-omics association, antisense oligodeoxynucleotide (asODN) silencing technique, and in vitro enzyme activity assay. The results revealed multiple strategies for light intensity adaptation in tea plant, among which the regulation of chloroplasts, photosynthesis, porphyrin metabolism, and resistance to oxidative stress were prominent. Caffeine catabolism was enhanced in continuous strong light, which may be a light-adapted strategy due to strict regulation by xanthine dehydrogenase (XDH). asODN silencing and enzymatic activity assays confirmed that CsXDH1 is a protein induced by light intensity to catalyze the substrate xanthine. CsXDH1 asODN silencing resulted in significant up-regulation of both caffeine and theobromine in in vitro enzyme activity assay, but not in vivo. CsXDH1 may act as a coordinator in light intensity adaptation, thus disrupting this balance of caffeine catabolism.

10.
Life Sci ; 326: 121752, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172818

RESUMEN

Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (µg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Masculino , Animales , Ratas Long-Evans , Especies Reactivas de Oxígeno , Compuestos de Bencidrilo/toxicidad , Inflamación
11.
J Zhejiang Univ Sci B ; 24(1): 64-77, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36632751

RESUMEN

Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Proliferación Celular , Citocinas , Estrés del Retículo Endoplásmico/genética
12.
Tissue Barriers ; 11(1): 2039003, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35262466

RESUMEN

Cholix (Chx) is secreted by non-pandemic strains of Vibrio cholerae in the intestinal lumen. For this exotoxin to induce cell death in non-polarized cells in the intestinal lamina propria, it must traverse the epithelium in the fully intact form. We identified host cell elements in polarized enterocytes associated with Chx endocytosis and apical to basal (A→B) vesicular transcytosis. This pathway overcomes endogenous mechanisms of apical vesicle recycling and lysosomal targeting by interacting with several host cell proteins that include the 75 kDa glucose-regulated protein (GRP75). Apical endocytosis of Chx appears to involve the single membrane spanning protein TMEM132A, and interaction with furin before it engages GRP75 in apical vesicular structures. Sorting within these apical vesicles results in Chx being trafficked to the basal region of cells in association with the Lectin, Mannose Binding 1 protein LMAN1. In this location, Chx interacts with the basement membrane-specific heparan sulfate proteoglycan perlecan in recycling endosomes prior to its release from this basal vesicular compartment to enter the underlying lamina propria. While the furin and LMAN1 elements of this Chx transcytosis pathway undergo cellular redistribution that are reflective of the polarity shifts noted for coatamer complexes COPI and COPII, GRP75 and perlecan fail to show these dramatic rearrangements. Together, these data define essential steps in the A→B transcytosis pathway accessed by Chx to reach the intestinal lamina propria where it can engage and intoxicate certain non-polarized cells.


The Vibrio cholerae exotoxin protein cholix interacts with a number of host cell proteins, including GRP75, to facilitate its vesicular transcytosis across polarized intestinal epithelial cells following apical endocytosis.


Asunto(s)
Furina , Transcitosis , Endocitosis , Proteínas de la Membrana
13.
Neurosci Bull ; 38(5): 489-504, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34783985

RESUMEN

Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons. Difficulty in the attentional task adjusts how much concentration we maintain on what is currently important and what is filtered as irrelevant sensory information. However, how task difficulty mediates the interactions between neurons with separated receptive fields (RFs) that are attended to or attended away is still not clear. We examined spike count correlations between single-unit activities recorded simultaneously in the primary visual cortex (V1) while monkeys performed a spatial attention task with two levels of difficulty. Moreover, the RFs of the two neurons recorded were non-overlapping to allow us to study fluctuations in the correlated responses between competing visual inputs when the focus of attention was allocated to the RF of one neuron. While increasing difficulty in the spatial attention task, spike count correlations were either decreased to become negative between neuronal pairs, implying competition among them, with one neuron (or none) exhibiting attentional enhancement of firing rate, or increased to become positive, suggesting inter-neuronal cooperation, with one of the pair showing attentional suppression of spiking responses. Besides, the modulation of spike count correlations by task difficulty was independent of the attended locations. These findings provide evidence that task difficulty affects the functional interactions between different neuronal pools in V1 when selective attention resolves the spatial competition.


Asunto(s)
Corteza Visual , Animales , Atención/fisiología , Macaca mulatta , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual Primaria , Corteza Visual/fisiología
14.
Heliyon ; 8(12): e12214, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36636221

RESUMEN

Background: Gastric cancer (GC) is one of the most common cancers of the digestive tract, with the fifth-highest incidence and third highest mortality rate in the world. Methods: In this study, the Kaplan-Meier Plotter database was used to analyze the correlation between the expression of the glutathione peroxidase (GPX) family and the clinical prognosis of gastric cancer (GC). The prognostic value of increased GPX family mRNA expression in GC patients in different clinical stages, with different differentiation degrees, in different genders and human epidermal growth factor receptor-2 (HER2) status, and treated with different therapeutic regimens was also studied. Results: The results showed that with the increase of GPX1 and GPX2 mRNA low expression levels, the overall survival (OS) of gastric cancer patients was longer. However, when the high expression levels of GPX3, GPX5 and GPX6 mRNA increased, gastric cancer patients presented good OS, while the increase of GPX4 mRNA expression level had no significant correlation with OS in gastric cancer patients. Conclusion: The results of this study are expected to provide a reliable basis for the clinical treatment of GC and lay a foundation for the development of a novel GC treatment approach.

15.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5727-5735, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951160

RESUMEN

Mecicinal plants boast abundant natural compounds with significant pharmacological activity, and such compounds, featuring diversified and complex structures, can be used for research and development of drugs. At present, these natural compounds are directly extracted from herbs which, however, suffer from damaged wild resources and shortage of planting resources attributing to the increasing demand. Moreover, the low content in medicinal plants and complex structures are another challenge to the research and development of drugs. Heterologous synthesis with synthetic biology methods is a solution that has attracted wide attention. Synthetic bio-logy for the production of natural active compounds in Chinese medicinal plants involves the exploration of key enzymes in compound bio-synthetic pathways from plants, analysis of enzyme functions and mechanisms, and reconstruction and optimization of biosynthetic pathways in microorganisms for efficient synthesis of compounds. This study briefed the development process of synthetic biology and the biosynthetic pathways of terpenoids, alkaloids, and flavonoids, and summarized the related strategies of synthetic biology such as the reconstruction and optimization of metabolic pathways, regulation of fermentation process, and strain improvement, and the latest applications of heterogeneous synthetic biology in the production of natural compounds from Chinese medicinals. This study is expected to serve as a reference for the efficient production of terpenoids, alkaloids, flavonoids, and other active compounds from Chinese medicinal plants with strategies of synthetic biology.


Asunto(s)
Alcaloides , Plantas Medicinales , Vías Biosintéticas , China , Biología Sintética
16.
J Immunol ; 205(11): 3191-3204, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148717

RESUMEN

IL-10 is a potent anti-inflammatory cytokine capable of suppressing a number of proinflammatory signals associated with intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease. Clinical use of human IL-10 (hIL-10) has been limited by anemia and thrombocytopenia following systemic injection, side effects that might be eliminated by a gut-restricted distribution. We have identified a transcytosis pathway used by cholix, an exotoxin secreted by nonpandemic forms of the intestinal pathogen Vibrio cholerae A nontoxic fragment of the first 386 aa of cholix was genetically fused to hIL-10 to produce recombinant AMT-101. In vitro and in vivo characterization of AMT-101 showed it to efficiently cross healthy human intestinal epithelium (SMI-100) by a vesicular transcytosis process, activate hIL-10 receptors in an engineered U2OS osteosarcoma cell line, and increase cellular phospho-STAT3 levels in J774.2 mouse macrophage cells. AMT-101 was taken up by inflamed intestinal mucosa and activated pSTAT3 in the lamina propria with limited systemic distribution. AMT-101 administered to healthy mice by oral gavage or to cynomolgus monkeys (nonhuman primates) by colonic spray increased circulating levels of IL-1R antagonist (IL-1Ra). Oral gavage of AMT-101 in two mouse models of induced colitis prevented associated pathological events and plasma cytokine changes. Overall, these studies suggest that AMT-101 can efficiently overcome the epithelial barrier to focus biologically active IL-10 to the intestinal lamina propria.


Asunto(s)
Colitis/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Animales , Células Cultivadas , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones SCID , Membrana Mucosa/metabolismo , Ratas , Ratas Wistar , Transcitosis/fisiología
17.
Tissue Barriers ; 8(1): 1710429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31928299

RESUMEN

Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide invitro and invivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (A→B) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete A→B transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.


Asunto(s)
Factores de Ribosilacion-ADP/química , Toxinas Bacterianas/química , Dominios Proteicos/fisiología , Transcitosis/fisiología , Humanos
18.
Biomed Res Int ; 2019: 6415732, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31205943

RESUMEN

PURPOSE: To explore the changes in FSP27 expression and fat metabolism in adipose tissue and their relationship after bariatric surgery in rats. METHOD: Food intake, body weight, triglyceride content, fat distribution, and fat cell morphology were evaluated in rats grouped into control, sham, sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) groups. Immunohistochemistry and western blotting were used to detect protein expression and real-time PCR was used to detect mRNA expression. Mouse 3T3-L1 preadipocytes were used to assess the effects of different energy levels and nutrient factors on FSP27 in adipocytes. RESULT: Food intake, body weight, and triglyceride levels were reduced in RYGB and SG rats within 28 days after surgery, with a more pronounced effect in the RYGB group. Weight loss was mainly due to loss of fat mass rather than loss of lean mass, with the most pronounced decrease in trunk fat. FSP27 expression increased in lean rat adipocytes accompanied by increased lipid droplets (LDs). In SG and RYGB rats, the FSP27 protein concentration gradually increased in white adipose tissue (WAT) after operation. Hormone-sensitive lipase (HSL), p-HSL/HSL, Adipose Triglyceride Lipase (ATGL), and Comparative Gene Identification-58 (CGI-58) gradually decreased in SG and RYGB rats, but they were always higher than in control and sham animals. FSP27 was also decreased in 3T3-L1 adipocytes of animals with a high-energy diet. CONCLUSION: FSP27 is associated with rat lipid metabolism and its expression varies with energy and nutrient supply. It can inhibit excessive hydrolysis and fat accumulation by regulating HSL and ATGL expression and by mediating LDs formation.


Asunto(s)
Tejido Adiposo/metabolismo , Cirugía Bariátrica , Lipólisis , Proteínas/metabolismo , Regulación hacia Arriba , Células 3T3-L1 , Animales , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
19.
Child Abuse Negl ; 93: 162-169, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31108406

RESUMEN

BACKGROUND: Prior researches have implicated a relationship of recidivism with childhood trauma (CT) and emotional intelligence (EI). However, the internal mechanism by which CT and EI influence the recidivism has not been examined. OBJECTIVE: This study aimed to map the road from CT and EI to recidivism in Chinese male offenders. PARTICIPANTS AND SETTING: Three thousand one hundred and eighty-one Chinese adult male offenders participated in this study and completed Childhood Trauma Questionnaire (CTQ) and Wong Law Emotional Intelligence Scale (WLEIS). Recidivism was quantified by the number of convictions according to official records. METHODS: After controlling for age, education levels, family criminal history, and nature of offence, logistic regression sanalysis was performed to examine the effects of CT and EI on severity of recidivism. Structural Equation Modeling (SEM) was applied to explore the mediation model between CT, EI and recidivism. RESULTS: Logistic regression model shows a significant effect of CT (OR = 1.008, p < 0.01), rather than EI, on recidivism. SEM supported a full mediating effect of CT in the relationship between EI and severity of recidivism. CONCLUSIONS: Our findings suggest that EI has no direct effect on the recidivism, but exerts indirect influence on the recidivism through the mediating role of childhood trauma.


Asunto(s)
Adultos Sobrevivientes del Maltrato a los Niños/psicología , Criminales/psicología , Inteligencia Emocional , Reincidencia/psicología , Adulto , China , Humanos , Modelos Logísticos , Masculino , Encuestas y Cuestionarios
20.
J Cell Physiol ; 234(2): 1937-1946, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30144070

RESUMEN

The development and progression of hepatocellular carcinoma (HCC) have been associated with abnormal cellular metabolism. Gene Expression Profiling Interactive Analysis RNA sequencing data revealed caveolin-1 (CAV-1) and hexokinase 2 (HK2) messenger RNA (mRNA) were significantly upregulated in human HCC compared with normal tissues, and high HK2 expression was associated with significantly poorer overall survival in HCC ( p < 0.05). CAV-1 and HK2 mRNA and protein expression were upregulated and positively correlated in 42 fresh human HCC tissues compared with tumor-adjacent normal tissues. Overexpression of CAV-1 or HK2 in SMMC-7721 and HepG2 HCC cells enhanced glucose and lactate metabolism and increased cell migration and invasion in transwell assays; knocking down CAV-1 or HK2 had the opposite effects. Overexpression of CAV-1 increased HK2 expression; overexpression of HK2 did not affect CAV-1 expression. Knocking down HK2 partially reversed the ability of CAV-1 to promote cellular metabolism, invasion, and migration in HCC, indicating CAV-1 enhances glycolysis, invasion, and metastasis in HCC cells via HK2-dependent mechanism. Further studies of the function and relationship between CAV-1 or HK2 expression are warranted to explore the potential of these proteins as metabolic targets for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Caveolina 1/metabolismo , Movimiento Celular , Metabolismo Energético , Hexoquinasa/metabolismo , Neoplasias Hepáticas/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Caveolina 1/genética , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Hexoquinasa/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Invasividad Neoplásica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...