Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 127(5): 631-646, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32418505

RESUMEN

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Comunicación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcriptoma
2.
Circ Res ; 121(12): 1370-1378, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-28928113

RESUMEN

RATIONALE: Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. OBJECTIVE: To determine the mechanisms underlying cardiac substrate use during pregnancy. METHODS AND RESULTS: We use here 13C glucose, 13C lactate, and 13C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. CONCLUSIONS: Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling.


Asunto(s)
Miocardio/metabolismo , Embarazo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Pirúvico/metabolismo , Animales , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Femenino , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Progesterona/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
3.
Circ Res ; 115(5): 504-17, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25009290

RESUMEN

RATIONALE: Mechanisms of angiogenesis in skeletal muscle remain poorly understood. Efforts to induce physiological angiogenesis hold promise for the treatment of diabetic microvascular disease and peripheral artery disease but are hindered by the complexity of physiological angiogenesis and by the poor angiogenic response of aged and patients with diabetes mellitus. To date, the best therapy for diabetic vascular disease remains exercise, often a challenging option for patients with leg pain. Peroxisome proliferation activator receptor-γ coactivator-1α (PGC-1α), a powerful regulator of metabolism, mediates exercise-induced angiogenesis in skeletal muscle. OBJECTIVE: To test whether, and how, PGC-1α can induce functional angiogenesis in adult skeletal muscle. METHODS AND RESULTS: Here, we show that muscle PGC-1α robustly induces functional angiogenesis in adult, aged, and diabetic mice. The process involves the orchestration of numerous cell types and leads to patent, nonleaky, properly organized, and functional nascent vessels. These findings contrast sharply with the disorganized vasculature elicited by induction of vascular endothelial growth factor alone. Bioinformatic analyses revealed that PGC-1α induces the secretion of secreted phosphoprotein 1 and the recruitment of macrophages. Secreted phosphoprotein 1 stimulates macrophages to secrete monocyte chemoattractant protein-1, which then activates adjacent endothelial cells, pericytes, and smooth muscle cells. In contrast, induction of PGC-1α in secreted phosphoprotein 1(-/-) mice leads to immature capillarization and blunted arteriolarization. Finally, adenoviral delivery of PGC-1α into skeletal muscle of either young or old and diabetic mice improved the recovery of blood flow in the murine hindlimb ischemia model of peripheral artery disease. CONCLUSIONS: PGC-1α drives functional angiogenesis in skeletal muscle and likely recapitulates the complex physiological angiogenesis elicited by exercise.


Asunto(s)
Activación de Macrófagos , Macrófagos/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Osteopontina/metabolismo , Factores de Transcripción/metabolismo , Adenoviridae/genética , Animales , Comunicación Celular , Línea Celular , Movimiento Celular , Quimiocina CCL2/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/terapia , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/terapia , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Osteopontina/deficiencia , Osteopontina/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Cardiovasc Res ; 101(4): 545-53, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24448314

RESUMEN

Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal 'invasion' profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology.


Asunto(s)
Cardiopatías/metabolismo , Hemodinámica/fisiología , Placenta/irrigación sanguínea , Circulación Sanguínea/fisiología , Femenino , Cardiopatías/etiología , Cardiopatías/terapia , Humanos , Mitocondrias/metabolismo , Periodo Periparto/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...