Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(6): eadf4144, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36753545

RESUMEN

Gap junction gene GJB2 (Cx26) mutations cause >50% of nonsyndromic hearing loss. Its recessive hetero-mutation carriers, who have no deafness, occupy ~10 to 20% of the general population. Here, we report an unexpected finding that these heterozygote carriers have hearing oversensitivity, and active cochlear amplification increased. Mouse models show that Cx26 hetero-deletion reduced endocochlear potential generation in the cochlear lateral wall and caused outer hair cell electromotor protein prestin compensatively up-regulated to increase active cochlear amplification and hearing sensitivity. The increase of active cochlear amplification also increased sensitivity to noise; exposure to daily-level noise could cause Cx26+/- mice permanent hearing threshold shift, leading to hearing loss. This study demonstrates that Cx26 recessive heterozygous mutations are not "harmless" for hearing as previously considered and can cause hyperacusis-like hearing oversensitivity. The data also indicate that GJB2 hetero-mutation carriers are vulnerable to noise and should avoid noise exposure in daily life.


Asunto(s)
Conexinas , Hiperacusia , Humanos , Ratones , Animales , Conexinas/genética , Conexinas/metabolismo , Heterocigoto , Hiperacusia/genética , Mutación , Audición/genética
2.
J Neurophysiol ; 127(1): 313-327, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907797

RESUMEN

It is critical for hearing that the descending cochlear efferent system provides a negative feedback to hair cells to regulate hearing sensitivity and protect hearing from noise. The medial olivocochlear (MOC) efferent nerves project to outer hair cells (OHCs) to regulate OHC electromotility, which is an active cochlear amplifier and can increase hearing sensitivity. Here, we report that the MOC efferent nerves also could innervate supporting cells (SCs) in the vicinity of OHCs to regulate hearing sensitivity. MOC nerve fibers are cholinergic, and acetylcholine (ACh) is a primary neurotransmitter. Immunofluorescent staining showed that MOC nerve endings, presynaptic vesicular acetylcholine transporters (VAChTs), and postsynaptic ACh receptors were visible at SCs and in the SC area. Application of ACh in SCs could evoke a typical inward current and reduce gap junctions (GJs) between them, which consequently enhanced the direct effect of ACh on OHCs to shift but not eliminate OHC electromotility. This indirect, GJ-mediated inhibition had a long-lasting influence. In vivo experiments further demonstrated that deficiency of this GJ-mediated efferent pathway decreased the regulation of active cochlear amplification and compromised the protection against noise. In particular, distortion product otoacoustic emission (DPOAE) showed a delayed reduction after noise exposure. Our findings reveal a new pathway for the MOC efferent system via innervating SCs to control active cochlear amplification and hearing sensitivity. These data also suggest that this SC GJ-mediated efferent pathway may play a critical role in long-term efferent inhibition and is required for protection of hearing from noise trauma.NEW & NOTEWORTHY The cochlear efferent system provides a negative feedback to control hair cell activity and hearing sensitivity and plays a critical role in noise protection. We reveal a new efferent control pathway in which medial olivocochlear efferent fibers have innervations with cochlear supporting cells to control their gap junctions, therefore regulating outer hair cell electromotility and hearing sensitivity. This supporting cell gap junction-mediated efferent control pathway is required for the protection of hearing from noise.


Asunto(s)
Nervio Coclear/fisiopatología , Células Ciliadas Auditivas Externas/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Neuronas Eferentes/fisiología , Animales , Vías Eferentes/fisiopatología , Femenino , Cobayas , Masculino
3.
Front Aging Neurosci ; 13: 710317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588972

RESUMEN

Alzheimer's disease (AD) is characterized by a progressive loss of memory and cognitive decline. However, the assessment of AD-associated functional and cognitive changes is still a big challenge. Auditory-evoked cortical potential (AECP) is an event-related potential reflecting not only neural activation in the auditory cortex (AC) but also cognitive activity in the brain. In this study, we used the subdermal needle electrodes with the same electrode setting as the auditory brainstem response (ABR) recording and recorded AECP in normal aging CBA/CaJ mice and APP/PS1 AD mice. AECP in mice usually appeared as three positive peaks, i.e., P1, P2, and P3, and three corresponding negative peaks, i.e., N1, N2, and N3. In normal aging CBA mice, the early sensory peaks P1, N1, and P2 were reduced as age increased, whereas the later cognitive peaks N2, P3, and N3 were increased or had no changes with aging. Moreover, the latency of the P1 peak was increased as age increased, although the latencies of later peaks had a significant reduction with aging. In AD mice, peak P1 was significantly reduced in comparison with wild-type (WT) littermates at young ages, proceeding AD phenotype presentation. In particular, the later cognitive peak P3 was diminished after 3 months old, different from the normal aging effect. However, the latencies of AECP peaks in AD mice generally had no significant delay or changes with aging. Finally, consistent with AECP changes, the accumulation of amyloid precursor protein (APP) at the AC was visible in AD mice as early as 2 months old. These data suggest that AECP could serve as an early, non-invasive, and objective biomarker for detecting AD and AD-related dementia (ADRD).

4.
Commun Biol ; 4(1): 24, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398038

RESUMEN

Inner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.


Asunto(s)
Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Provocada por Ruido/etiología , Ruido/efectos adversos , Potasio/metabolismo , Sinapsis/fisiología , Animales , Bloqueadores de los Canales de Calcio , Agonistas de Aminoácidos Excitadores , Antagonistas de Aminoácidos Excitadores , Femenino , Pérdida Auditiva Provocada por Ruido/metabolismo , Masculino , Ratones Endogámicos CBA , Terapia Molecular Dirigida , Bloqueadores de los Canales de Potasio , Distribución Aleatoria
5.
Am J Stem Cells ; 9(1): 1-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211215

RESUMEN

Postnatal mammalian cochlear hair cells (HCs) can be regenerated by direct transdifferentiation or by mitotic regeneration from supporting cells through many pathways, including Atoh1, Wnt, Hedgehog and Notch signaling. However, most new HCs are immature HCs. In this study we used RNA-Seq analysis to compare the differences between the transcriptomes of Atoh1 overexpression-induced new HCs and the native HCs, and to define the factors that might help to promote the maturation of new HCs. As expected, we found Atoh1-induced new HCs had obvious HC characteristics as demonstrated by the expression of HC markers such as Pou4f3 and Myosin VIIA (Myo7a). However, Atoh1-induced new HCs had significantly lower expression of genes that are related to HC function such as Slc26a5 (Prestin), Slc17a8 and Otof. We found that genes related to HC cell differentiation and maturation (Kcnma1, Myo6, Myo7a, Grxcr1, Gfi1, Wnt5a, Fgfr1, Gfi1, Fgf8 etc.) had significantly lower expression levels in new HCs compared to native HCs. In conclusion, we found a set of genes that might regulate the differentiation and maturation of new HCs, and these genes might serve as potential new therapeutic targets for functional HC regeneration and hearing recovery.

6.
Neurosci Lett ; 717: 134705, 2020 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-31870800

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive loss of memory and cognitive decline. Over the last decade, it has been found that defects in sensory systems could be highly associated with AD. Hearing is an important neural sense. However, little is known about hearing functional changes in AD. In this study, APP/PS1 AD mice (Jackson Lab: Stack No. 004462) were used. Hearing function was assessed by auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and cochlear microphonics (CM) recordings. Wild-type (WT) littermates served as control. We found that APP/PS1 AD mice measured as ABR threshold had hearing loss. The hearing loss appeared at high frequency as early as 2 months old, prior to the reported occurrence of spatial learning deficit at 6-7 months of age in this AD mouse model. The hearing loss was progressive and extended from high frequency to low frequency. At 3-4 months old, the hearing loss appeared in the whole-frequency range. Moreover, the wave IV and V in the super-threshold ABR were eliminated, indicating substantial impairment in inferior colliculus, nuclei of lateral lemniscus, and medial geniculate body in the upper brainstem. DPOAE in APP/PS1 AD mice was also reduced. However, there was no reduction in CM in APP/PS1 mice. These data demonstrate that unlike age-related hearing loss APP/PS1 AD mice have early onset of hearing loss. These data also suggest that hearing function testing could provide a simple, sensitive, non-invasive screen-tool for early detecting AD and localizing lesion.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Sordera/fisiopatología , Pérdida Auditiva/fisiopatología , Memoria/fisiología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos
7.
Oncol Lett ; 15(4): 5849-5858, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29552214

RESUMEN

The Wnt/ß-catenin pathway serves important roles in cancer development. The expression and function of Chibby (Cby), as a direct antagonist of ß-catenin, in nasopharyngeal carcinoma (NPC) has not been fully investigated. The present study revealed that the mRNA and protein expression of Cby was significantly lower in NPC tissue than in the adjacent normal tissue. Low expression of Cby was significantly associated with the tumor and the clinical staging. Furthermore, Cby overexpression inhibited the proliferation of human NPC SUNE1 cells and induced cell cycle arrest. In addition, Cby overexpression also significantly enhanced the susceptibility of SUNE1 cells to apoptosis. These results indicated that Cby might serve as an anti-oncogenic gene in the development of NPC and could represent a potential therapeutic target for the human NPC therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...