Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Chemosphere ; : 142565, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871187

RESUMEN

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY+BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.

2.
Environ Res ; 252(Pt 3): 119067, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704002

RESUMEN

Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Monitoreo del Ambiente , Estaciones del Año , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , China , Radicales Libres/análisis , Biomasa , Material Particulado/análisis , Ciudades , Contaminación del Aire/análisis
3.
J Hazard Mater ; 473: 134643, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776815

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have the capability for solar radiation absorption related to climate forcing. Herein, pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles in a cold megacity were comprehensively investigated. The mean concentrations of Σ18PAHs in all the 11 particle size ranges were 3.95 ± 4.77 × 104 pg/m3 and 2.17 ± 1.54 × 103 pg/m3 in heating period (HP) and non-heating period (NHP), respectively. Except for most PAHs with 2 and 3 benzene rings in NHP, most other PAHs showed a unimodal distribution pattern with the peak at 0.56-1.0 µm in both periods, which was caused by PAH emission sources. The PAH-related climate forcing was mainly caused by the solar radiation absorptions at ∼325 (∼330) nm and ∼365 nm. In general, the absorption intensities were higher in HP than NHP. The absorption intensity in the particle size range of 0.56-1.0 µm was the highest, and benzo[e]pyrene was the dominant contributor. In colder periods in HP, higher PAH concentrations caused more intensive PAH-related climate forcing. This study provided new insights for pollution characteristics and absorption spectra of size-resolved PAHs in atmospheric particles, which will be useful for better understanding PAH-related climate forcing.

4.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786852

RESUMEN

In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in wastewater. The characterization of the TM-CN and the C-TM-CN was conducted via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FTIR) to ascertain the successful modification. The organic dye degradation experiments demonstrated that introducing an appropriate amount of Ti3C2 MXene resulted in the complete degradation of RhB within 60 min, three times the photocatalytic efficiency of a pure g-C3N4. The C-TM-CN exhibited the stable and outstanding photocatalytic degradation of the RhB solution over a wide range of pH values, indicating the characteristics of the photodegradation of organic pollutants in a wide range of aqueous environments. Furthermore, the results of the cyclic degradation experiments demonstrated that the C-TM-CN composite film maintained a degradation efficiency of over 85% after five cycles, thereby confirming a notable improvement in its cyclic stability. Consequently, the C-TM-CN composite film exhibits excellent photocatalytic performance and is readily recyclable, making it an auspicious eco-friendly material in water environment remediation.

5.
J Environ Manage ; 357: 120732, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560954

RESUMEN

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Antibacterianos/análisis , Medición de Riesgo , Macrólidos/análisis , Preparaciones Farmacéuticas
6.
Sci Total Environ ; 924: 171589, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461988

RESUMEN

Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.-based bioreactors (BBR) treatment system remains unclear. In this study, sludge and waste water samples were collected during separate winter and summer sampling campaigns from a typical BBR treatment system. The results indicate that out of 58 target PPCPs, 27 compounds were detected in the waste water (0.06-1900 ng/L), and 23 were found in the sludge (0.6-7755 ng/g dw). Paraxanthine was the chemical of the highest abundance in the influent due to the high consumption of the parent compounds caffeine and theobromine. The profile for PPCPs in the wastewater and sludge exhibited no seasonal variation. Overall, the removal of target PPCPs in summer is more effective than the winter. In the BBR bio-reactor, it was found that selected PPCPs (at ng/L level) can be completely removed. The efficiency for individual PPCP removal was increased from 1.0 % to 50 % in this unit, after target specific adjustments of the process. The effective removal of selected PPCPs by the BBR treatment system is explained by combined sorption and biodegradation processing. The re-occurrence of PPCPs in the wastewater was monitored. Negative removal efficiency was explained by the cleavage of Phase II metabolites after the biotransformation process, and the lack of equilibrium for PPCPs in the sludge of the second clarifier. A compound specific risk quotient (RQ) was calculated and applied for studying the potential environmental risks. Diphenhydramine is found with the highest environmental risk in wastewater, and 15 other PPCPs show negligible risks in sewage sludge.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Cosméticos/análisis , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Monitoreo del Ambiente
7.
World J Gastrointest Oncol ; 15(10): 1756-1770, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37969414

RESUMEN

BACKGROUND: Colon cancer remains a leading cause of death globally. Pomolic acid (PA) can be separated from the ethyl acetate fraction of achyrocline satureioides. AIM: To determine the effects of PA and its glucopyranose ester, pomolic acid-28-O-ß-D-glucopyranosyl ester (PAO), on colon cancer HT-29 cells. METHODS: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay was used to measure cell viability. Apoptosis was detected via hoechst 33342 staining. PI single staining was identified by flow cytometry to determine the cycle and scratch assay was used to observe the migration of HT-29 cells. The levels of mRNA and proteins were evaluated by q polymerase chain reaction and western blotting, respectively. RESULTS: PA and PAO considerably inhibited the growth of the HT-29 cell line in a time and dose-dependent manner. After the administration of PA and PAO for 24 and 48 h, cell apoptosis was significantly promoted and HT-29 cells were arrested in the G0/G1 stage. The Bax/Bcl2 ratio was also increased, which activated cysteinyl aspartate specific proteinase 3, leading to apoptosis; it also increased the expression of light chain 3 II/I and Beclin1, which activated autophagy and caused cell death. This in turn increased the expression of p62 to promote cell apoptosis, inhibiting the levels of signal transducer and activator of transcription 3 (STAT3) and p-STAT3, suppressing the level of Bcl2, and promoting cell. CONCLUSION: Both PA and PAO provide novel therapeutic strategies for treating colorectal cancer.

8.
Sci Total Environ ; 904: 166709, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659555

RESUMEN

Few simultaneous studies of organochlorine pesticides (OCPs) in the atmosphere have been conducted across Southeast and Northeast China, and no data on the gas/particle (G/P) partitioning behaviors of several current-use OCPs are available. In this study, a one-year synchronous monitoring program was conducted for OCPs in Chinese atmosphere spanning 30° latitude and 60 °C temperature. A total of 111 pairs of gas and particle samples were collected from Mohe and Harbin in Northeast China and from Shenzhen in Southeast China. The detection frequency for 66.7 % of the OCPs exceeded 80 %, indicating their prevalence in the atmosphere. The concentrations of individual OCPs spanned six orders of magnitude, indicating different pollution levels. Highest levels of hexachlorobenzene were observed at all sites. Banned OCPs were found predominantly in secondary distribution patterns, whereas current-use OCPs were dominated by primary distribution patterns. In Harbin and Mohe, the concentrations of OCPs were highest in summer, followed by autumn and winter. No obvious seasonal variation was observed in Shenzhen associated with different cultivation types. At all three sites, OCPs were predominantly found in the gas phase, and higher percentages of particle-phase OCPs were observed in Harbin and Mohe than in Shenzhen. In this study, G/P partitioning models were used to study the G/P partitioning mechanism of OCPs. The Li-Ma-Yang model provided the most accurate prediction of the G/P partitioning behavior of OCPs with high molecular weights and low vapor pressures, particularly at low temperatures. However, OCPs with lower molecular weights and higher vapor pressures were predominantly in the equilibrium state, for which the Junge-Pankow model was suitable. This systematic cross-scale study provides new insights into pollution, G/P partitioning, and the environmental behavior of OCPs in the atmosphere.

9.
Front Endocrinol (Lausanne) ; 14: 1238399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701900

RESUMEN

Backgrounds: The safety of different sodium-glucose transporter 2 (SGLT-2) inhibitors remains uncertain due to the lack of head-to-head comparisons. Methods: This network meta-analysis (NMA) was performed to compare the safety of nine SGLT-2 inhibitors in patients with type 2 diabetes (T2DM). PubMed, Embase, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov were searched for studies published in English before August 30, 2022. Published and unpublished randomized controlled trials (RCTs) comparing the safety of individual SGLT-2 inhibitors in patients with T2DM were included. A Bayesian NMA with random effects model was applied. Subgroup and sensitivity analyses were performed. The quality of the evidence was evaluated using the Confidence in Network Meta-Analysis framework. Results: Nine SGLT-2 inhibitors were evaluated in 113 RCTs (12 registries) involving 105,293 adult patients. Reproductive tract infections (RTIs) were reported in 1,967 (4.51%) and 276 (1.01%) patients in the SGLT-2 inhibitor and placebo groups, respectively. Furthermore, pollakiuria was reported in 233 (2.66%) and 45 (0.84%) patients, respectively. Compared to placebo, a significantly higher risk of RTIs was observed with canagliflozin, ertugliflozin, empagliflozin, remogliflozin, dapagliflozin, and sotagliflozin, but not with luseogliflozin and ipragliflozin, regardless of gender. An increased risk of pollakiuria was observed with dapagliflozin [odds ratio (OR) 10.40, 95% confidence interval (CI) 1.60-157.94) and empagliflozin (OR 5.81, 95%CI 1.79-32.97). Remogliflozin (OR 6.45, 95%CI 2.18-27.79) and dapagliflozin (OR 1.33, 95%CI 1.10-1.62) were associated with an increased risk of urinary tract infections (UTIs). Instead, the included SGLT-2 inhibitors had a protective effect against acute kidney injury (AKI). No significant differences were found for hypovolemia, renal impairment or failure, fracture, diabetic ketoacidosis (DKA), amputation, and severe hypoglycemia between the SGLT-2 inhibitor and the placebo groups. Conclusion: In patients with T2DM, dapagliflozin was associated with an increased risk of RTIs, pollakiuria, and UTIs. Empagliflozin increased the risk of RTIs and pollakiuria. Remogliflozin increased the risk of UTIs. None of the SGLT-2 inhibitors showed a significant difference from the placebo for hypovolemia, renal impairment or failure, fracture, DKA, amputation, and severe hypoglycemia. The findings guide the selection of SGLT-2 inhibitors for patients with T2DM based on the patient's profiles to maximize safety. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42022334644.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cetoacidosis Diabética , Fracturas Óseas , Hipoglucemia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipovolemia , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos
10.
Sci Total Environ ; 896: 165316, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37414160

RESUMEN

Parabens are widely present in aquatic environments and pose potential health risk. Although great progress has been made in the field of the photocatalytic degradation of parabens, the powerful Coulomb interactions between electrons and holes are the major limitations to photocatalytic performance. Hence, acid-induced tubular g-C3N4 (AcTCN) was prepared and applied for the removal of parabens from a real water environment. AcTCN not only increased the specific surface area and light absorption capacity, but also selectively generated 1O2 via an energy transfer-mediated oxygen activation pathway. The 1O2 yield of AcTCN was 11.8 times higher than that of g-C3N4. AcTCN exhibited remarkable removal efficiencies for parabens depending on the length of the alkyl group. Furthermore, the rate constants (k values) of parabens in ultrapure water were higher than those in tap and river water because of the presence of organic and inorganic species in real water environments. Two possible pathways for the photocatalytic degradation of parabens are proposed based on the identification of intermediates and theoretical calculations. In summary, this study offers theoretical support for the efficient enhancement of the photocatalytic performance of g-C3N4 for the removal of parabens in real water environments.

11.
Environ Sci Pollut Res Int ; 30(34): 82152-82161, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37318734

RESUMEN

Although organochlorine pesticides (OCPs) in the Stockholm Convention List were banned for a period of time, the residue of OCPs in environment was still detected recently. Therefore, the continuous environmental monitoring was necessary and important for the deep understanding on the temporal trend of environmental fate of OCPs. In this study, the national scale surface soil samples in 26 provinces of China in 2012 were collected, and 28 OCPs were analyzed. The mean concentrations (ng/g dw) of Σhexachlorocyclohexanes (HCHs), Σdichlorodiphenyltrichloroethane (DDTs), hexachlorobenzene (HCB), and hexachlorobutadiene (HCBD) were 2.47 ± 5.4, 4.29 ± 8.28, 3.33 ± 7.68, and 0.041 ± 0.097, respectively. The correlations between OCPs concentrations with temperature, latitude, and longitude were conducted for the deep study of the spatial distribution pattern of OCPs. It was found that HCHs, HCB, and HCBD are positively correlated with latitude and longitude; however, the correlations were not significant. HCHs followed the secondary distribution pattern, and DDTs followed both the primary and/or secondary distribution patterns. Except for HCB, other OCPs showed a gradual downward trend from 2005 to 2012, indicating the effectiveness of the phase-out of OCPs. In summary, the results of the study provided new insight into the related studies, which will help us to better understand the long-term environmental fate of OCPs on large scales.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Clorados , Plaguicidas , Contaminantes del Suelo , China , Monitoreo del Ambiente/métodos , Hexaclorobenceno/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Suelo/química , Contaminantes del Suelo/análisis , Análisis Espacial
12.
Anal Biochem ; 674: 115208, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315679

RESUMEN

BACKGROUND: Insertion and deletion (InDel) polymorphisms have considerable potential in the field of forensic genetics because of their low mutation rate and small amplicons. At present, InDel polymorphisms detection based on the technique of capillary electrophoresis is the main technique used in forensic DNA laboratory. However, this method is complicated and time-consuming, and is not suitable for rapid on-site paternity and personal identification. Next-generation sequencing analysis of InDels polymorphisms requires expensive instruments, large upfront reagent and supply costs, computational requirements and complex bioinformatics, increased the time to obtain results. Thus, there is an urgent need to establish a method to provide reliable, rapid, sensitive and economical genotyping for InDels. METHOD: A rapid InDels (32 InDels) panel was established using fluorogenic probes-based multiplex real-time PCR with microfluidic test cartridge and portable real-time PCR instrument. Then, we performed several validation studies including concordance, accuracy, sensitivity, stability, species specificity. RESULTS: It showed that the complete genotypes could be obtained from ≥100 pg of input DNA and from a series of challenging samples with high accuracy and specificity within 90 min. CONCLUSION: This method provides a rapid and cost-effective solution for InDels genotyping and personal identification in portable format.


Asunto(s)
Antropología Forense , Polimorfismo Genético , Humanos , Genotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , ADN/análisis
13.
J Hazard Mater ; 455: 131639, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196441

RESUMEN

The floating catkins generated by willow and poplar trees have been criticized for spreading germ and causing fire for decades. It has been found that catkins are with a hollow tubular structure, which made us wonder if the floating catkins can adsorb atmospheric pollutions. Thus, we conducted a project in Harbin, China to investigate whether and how willow catkins could adsorb atmospheric polycyclic aromatic hydrocarbons (PAHs). The results suggest that both the catkins floating in the air and on the ground preferred to adsorb gaseous PAHs rather than particulate PAHs. Moreover, 3- and 4-ring PAHs were the dominating compositions adsorbed by catkins, which significantly increased with exposure time. The gas/catkins partition (KCG) was defined, which explained why 3-ring PAHs are more easily adsorbed by catkins than by airborne particles when their subcooled liquid vapor pressure is high (log PL > -1.73). The removal loading of atmospheric PAHs by catkins were estimated as 1.03 kg/year in the center city of Harbin, which may well explain the phenomenon that levels of gaseous and total (particle + gas) PAHs are relatively low in the months with catkins floating reported in peer-reviewed papers.

14.
Sci Total Environ ; 877: 162718, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36914128

RESUMEN

To comprehensively clarify the pollution characteristics of persistent toxic substances, the Soil and Air Monitoring Program Phase III (SAMP-III) was conducted in 2019 in China. In total, 154 surface soil samples were collected across China, and 30 unsubstituted polycyclic aromatic hydrocarbons (U-PAHs) and 49 methylated PAHs (Me-PAHs) were analyzed in this study. The mean concentrations of total U-PAHs and Me-PAHs were 540 ± 778 and 82.0 ± 132 ng/g dw, respectively. Northeastern China and Eastern China are the two regions of concern with high PAH and BaP equivalency levels. Compared with SAMP-I (2005) and SAMP-II (2012), an obvious upward temporal trend followed by a downward trend of PAH levels was observed in the past 14 years for the first time. The mean concentrations of 16 U-PAHs were 377 ± 716, 780 ± 1010, and 419 ± 611 ng/g dw in surface soil across China for the three phases, respectively. Considering rapid economic growth and energy consumption, an increasing trend from 2005 to 2012 was expected. From 2012 to 2019, the PAH levels in soils across China decreased by 50 %, which was consistent with the decline in PAH emissions. The period of reduction of PAHs in surface soil coincided with the implementation of Air and Soil Pollution Control Actions in China after 2013 and 2016, respectively. Along with the pollution control actions in China, the pollution control of PAHs and the increase in soil quality can be expected in the near future.

15.
Chemosphere ; 322: 138136, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36796526

RESUMEN

Indoor window films can represent short-term air pollution conditions of indoor environment through rapidly capturing organic contaminants as effective passive air samplers. To investigate the temporal variation, influence factors of polycyclic aromatic hydrocarbons (PAHs) in indoor window films, and the exchange behavior with gas phase in college dormitories, 42 pairs window films of interior and exterior window surfaces and corresponding indoor gas phase and dust samples were collected monthly in six selected dormitories, Harbin, China, from August to December 2019 and September 2020. The average concentration of ∑16PAHs in indoor window films (398 ng/m2) was significantly (p < 0.01) lower than that in outdoors (652 ng/m2). In addition, the median indoor/outdoor ∑16PAHs concentration ratio was close to 0.5, showing that outdoor air acted as a major PAH source to indoor environment. The 5-ring PAHs were mostly dominant in window films whereas the 3-ring PAHs contributed mostly in gas phase. 3-ring PAHs and 4-ring PAHs were both important contributors for dormitory dust. Window films showed stable temporal variation, i.e. PAH concentrations in heating months were higher than those in non-heating months. The atmospheric O3 concentration was the main influence factor of PAHs in indoor window films. PAHs with low molecular weight in indoor window films rapidly reached film/air equilibrium phase within in dozens of hours. The large deviation in the slope of the log KF-A versus log KOA regression line from that in reported equilibrium formula might be the difference between the window film composition and octanol.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Polvo
16.
Environ Pollut ; 323: 121266, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780976

RESUMEN

Elevated urinary polycyclic aromatic hydrocarbon metabolites have been linked to an increased risk of cardiovascular diseases (CVDs). However, for petrochemical workers with potentially high PAH exposure, it remains largely unknown whether the link will be amplified. Thus, this work aimed to investigate 14 urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 746 petrochemical workers working in a Chinese petrochemical industrial area and their association with the risk of hypertension using the binary logistic regression. Metabolites of naphthalene, fluorene, phenanthrene, and pyrene were frequently detected in the 746 urine samples analyzed (>98%), with Σ10OH-PAH concentration in the range of 0.906-358 ng/mL. 2-hydroxynaphthalene accounted for the largest proportion of ten detected OH-PAHs (60.8% of Σ10OH-PAHs). There were significant correlations between these metabolites and other factors, including gender, age, and body mass index. Diastolic blood pressure, not systolic blood pressure, was significant positively associated with the urinary Σ10OH-PAH concentrations of the petrochemical workers. Elevated urinary 2/3-OH-Flu was significantly associated with an increased risk of hypertension (adjusted odds ratio: 1.96, 95% confidence interval: 1.20-3.18, p = 0.007), suggesting that PAH exposure in petrochemical workers was a driving factor of hypertension. In the stratified analysis, the association was more pronounced in those who were overweight with older age. Although the PAH exposure risk in petrochemical workers based on the estimated daily intakes was relatively low. Given the long-term impact, we call attention to CVDs of petrochemical workers.


Asunto(s)
Hipertensión , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Pueblos del Este de Asia , Exposición Profesional/análisis , Modelos Logísticos , Hipertensión/inducido químicamente , Hipertensión/epidemiología , Biomarcadores/orina
17.
J Hazard Mater ; 443(Pt B): 130285, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335903

RESUMEN

Along with the restriction and prohibition of historic used organochlorine pesticides (OCPs), current used pesticides (CUPs) were widely used as alternatives. In order to investigate the pollution characteristics of pesticides, the levels and spatial distributions of OCPs and CUPs in 154 surface soil across China were comprehensively compared. Totally, 107 target pesticides were screened, and 20 OCPs and 34 CUPs were detected. The numbers of co-occurred pesticides in single soil sample were from 17 to 36 indicating the diversity and complexity of pesticides pollution. The concentrations of OCPs in urban soils were higher than rural soils, while rural > urban for CUPs. Furthermore, obviously different spatial distribution patterns were found for OCPs and CUPs. For OCPs, the secondary distribution pattern was dominant. For CUPs, the primary distribution pattern was obviously observed due to their current extensive usage. In addition, higher concentrations of both CUPs and OCPs were accumulated in the Northeast China Plain due to long-range atmospheric transport and deposition. Along with the old topic of OCPs, the study pointed out the preliminary understanding of CUPs pollution characteristic in surface soil of China, which provided a new story with the deep understanding of their environmental fate in both China and the world.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Contaminantes del Suelo , Plaguicidas/análisis , Suelo , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Hidrocarburos Clorados/análisis , China
18.
Environ Sci Ecotechnol ; 14: 100229, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36531934

RESUMEN

The historical annual loading to, removal from, and cumulative burden in the Arctic Ocean for ß-hexachlorocyclohexane (ß-HCH), an isomer comprising 5-12% of technical HCH, is investigated using a mass balance box model from 1945 to 2020. Over the 76 years, loading occurred predominantly through ocean currents and river inflow (83%) and only a small portion via atmospheric transport (16%). ß-HCH started to accumulate in the Arctic Ocean in the late 1940s, reached a peak of 810 t in 1986, and decreased to 87 t in 2020, when its concentrations in the Arctic water and air were ∼30 ng m-3 and ∼0.02 pg m-3, respectively. Even though ß-HCH and α-HCH (60-70% of technical HCH) are both the isomers of HCHs with almost identical temporal and spatial emission patterns, these two chemicals have shown different major pathways entering the Arctic. Different from α-HCH with the long-range atmospheric transport (LRAT) as its major transport pathway, ß-HCH reached the Arctic mainly through long-range oceanic transport (LROT). The much higher tendency of ß-HCH to partition into the water, mainly due to its much lower Henry's Law Constant than α-HCH, produced an exceptionally strong pathway divergence with ß-HCH favoring slow transport in water and α-HCH favoring rapid transport in air. The concentration and burden of ß-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.

19.
Sci Total Environ ; 863: 160852, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526181

RESUMEN

As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.


Asunto(s)
Ácidos Ftálicos , Plastificantes , Humanos , Plastificantes/análisis , Material Particulado/análisis , Estaciones del Año , Ácidos Ftálicos/análisis , Temperatura , Humedad , China , Ésteres/análisis
20.
Sci Total Environ ; 856(Pt 2): 159247, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208767

RESUMEN

Propylparaben (PrP) has attracted extensive concerns due to its wide occurrence in wastewater and potential health risk. Herein, nitrogen vacancy engineered reticulate g-C3N4 (Nv-RCN) was successfully synthesized for the photodegradation of PrP. Nv-RCN exhibited larger specific surface area, greater light absorption ability, higher transfer and separation efficiency of charge carriers in comparison with bulk g-C3N4 (CN). According to the characterization results and DFT calculation, nitrogen vacancy could capture electrons and facilitate oxygen adsorption. The Nv-RCN exhibited an outstanding PrP removal efficiency of 94.3 %, and the corresponding apparent rate constant of Nv-RCN was 3.37 times higher than that of CN. High O2 concentration (8 mg/L) and low pH value (pH = 3) promoted PrP photodegradation based on Box-Behnken Design. The O2- was the major radical during PCOP of Nv-RCN, and could oxidize PrP by decarbonylation and dealkylation. This study provided new insights to the improvement of photodegradation performance of g-C3N4 for parabens removal and related environmental remediation.


Asunto(s)
Nitrógeno , Parabenos , Fotólisis , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...