Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Neurosci ; 17: 1187669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456994

RESUMEN

Background and objective: Ultrasound has been widely used in the diagnosis and minimally invasive treatment of peripheral nerve diseases in the clinic, but there is still a lack of feasibility analysis in rodent models of neurological disease. The purpose of this study was to investigate the changes in the cross-sectional area of the sciatic nerve of different genders and body weights and to explore the effectiveness and reliability of an ultrasound-guided block around the sciatic nerve in living rats. Methods: Using ultrasound imaging anatomy of the sciatic nerve of rats, the cross-sectional area of the sciatic nerve in rats of different genders from 6 to 10 weeks old was calculated, and then analyzed its correlation with body weight. Further analyses were conducted through behavioral and cadaveric studies to evaluate the feasibility of ultrasound-guided perineural injection of the sciatic nerve in rats. Results: We first reported that the sciatic nerve cross-sectional area of rats was increased with age (F = 89.169, P < 0.001), males had a higher sciatic nerve cross-sectional area than females (F = 60.770, P < 0.001), and there was a positive correlation with body weight (rMale = 0.8976, P < 0.001; rFemale = 0.7733, P < 0.001). Behavioral observation of rats showed that the lower extremity complete block rate was 80% following the administration of drugs around the sciatic nerve under ultrasound guidance and staining with methylene blue occurred in all sciatic nerves and surrounding muscles and fascia using 20 ultrasound-guided injections. Conclusions: Ultrasound visualization technology can be used as a new auxiliary evaluation and intervention therapy for animal models of peripheral nerve injury, and will provide overwhelming new references for the basic research of neurological diseases.

2.
J Neurosci ; 43(16): 2907-2920, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36868854

RESUMEN

General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.


Asunto(s)
Prosencéfalo Basal , Isoflurano , Masculino , Femenino , Ratones , Animales , Isoflurano/farmacología , Prosencéfalo Basal/fisiología , Neuronas GABAérgicas/fisiología , Sueño/fisiología , Electroencefalografía , Anestesia General
3.
Expert Rev Med Devices ; 19(8): 649-656, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36200143

RESUMEN

BACKGROUND: This multicenter prospective, randomized controlled clinical trial compared the clinical performance of supraglottic airway device (SAD) BlockBusterTM and laryngeal mask airway (LMA) Supreme for airway maintenance in anesthetized, paralyzed adult patients. METHODS: A total of 651 adult patients scheduled for elective surgery in 13 hospitals were randomly allocated into BlockBuster group (n = 351) or Supreme group (n = 300). The primary outcome was oropharyngeal leak pressure (OLP). Duration and ease of insertion, fiberscopic view of positioning, airway manipulations, and complications were also assessed. RESULTS: The OLP was significantly higher in BlockBuster group compared with Supreme group (29.9 ± 4.2 cmH2O vs 27.4 ± 4.3 cmH2O, p < 0.001). Success rate of insertion at the first attempt (90.2% vs 85.1%, p = 0.027), rate of optimal fiberscopic view (p = 0.002) and satisfactory positioning of SAD (p < 0.001) were significantly increased in BlockBuster group. CONCLUSIONS: Both SAD BlockBusterTM and LMA Supreme are safe, effective, and easy-to-use devices for airway maintenance in anesthetized, paralyzed adult patients, but the SAD BlockBusterTM is superior to LMA Supreme in terms of OLP, success rate at the first attempt, and fiber-optic view of positioning. TRIAL REGISTRATION: The trial is registered at www.chictr.org.cn (ChiCTR-ONC-16009105).


Asunto(s)
Máscaras Laríngeas , Adulto , Humanos , Estudios Prospectivos , Tecnología de Fibra Óptica , Orofaringe
4.
Front Neurosci ; 16: 850193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527820

RESUMEN

In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep-wake behavior. However, the specific role of VTA glutamatergic neurons in sleep-wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.

5.
Neuropharmacology ; 208: 108979, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131297

RESUMEN

Defensive behavior, a group of responses that evolved due to threatening stimuli, is crucial for animal survival in the natural environment. For defensive measures to be timely and successful, a high arousal state and immediate sleep-to-wakefulness transition are required. Recently, the glutamatergic basal forebrain (BF) has been implicated in sleep-wake regulation; however, the associated physiological functions and underlying neural circuits remain unknown. Here, using in vivo fiber photometry, we found that BF glutamatergic neuron is activated by various threatening stimuli, including predator odor, looming threat, sound, and tail suspension. Optogenetic activation of BF glutamatergic neurons induced a series of context-dependent defensive behaviors in mice, including escape, fleeing, avoidance, and hiding. Similar to the effects of activated BF glutamatergic cell body, photoactivation of BF glutamatergic terminals in the ventral tegmental area (VTA) strongly drove defensive behaviors in mice. Using synchronous electroencephalogram (EEG)/electromyogram (EMG) recording, we showed that photoactivation of the glutamatergic BF-VTA pathway produced an immediate transition from sleep to wakefulness and significantly increased wakefulness. Collectively, our results clearly demonstrated that the glutamatergic BF is a key neural substrate involved in wakefulness and defensive behaviors, and encodes these behaviors through glutamatergic BF-VTA pathway. Overexcitation of the glutamatergic BF-VTA pathway may be implicated in clinical psychiatric diseases characterized by exaggerated defensive responses, such as autism spectrum disorders.


Asunto(s)
Prosencéfalo Basal , Vigilia , Animales , Prosencéfalo Basal/fisiología , Electroencefalografía/métodos , Mesencéfalo , Ratones , Sueño/fisiología , Vigilia/fisiología
6.
Front Pharmacol ; 13: 991238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712675

RESUMEN

Background: The parabrachial nucleus (PBN) is an important structure regulating the sleep-wake behavior and general anesthesia. Astrocytes in the central nervous system modulate neuronal activity and consequential behavior. However, the specific role of the parabrachial nucleus astrocytes in regulating the sleep-wake behavior and general anesthesia remains unclear. Methods: We used chemogenetic approach to activate or inhibit the activity of PBN astrocytes by injecting AAV-GFAabc1d-hM3Dq-eGFP or AAV-GFAabc1d-hM4Di-eGFP into the PBN. We investigated the effects of intraperitoneal injection of CNO or vehicle on the amount of wakefulness, NREM sleep and REM sleep in sleep-wake behavior, and on the time of loss of righting reflex, time of recovery of righting reflex, sensitivity to isoflurane, electroencephalogram (EEG) power spectrum and burst suppression ratio (BSR) in isoflurane anesthesia. Results: The activation of PBN astrocytes increased wakefulness amount for 4 h, while the inhibition of PBN astrocytes decreased total amount of wakefulness during the 3-hour post-injection period. Chemogenetic activation of PBN astrocytes decreased isoflurane sensitivity and shortened the emergence time from isoflurane-induced general anesthesia. Cortical EEG recordings revealed that PBN astrocyte activation decreased the EEG delta power and BSR during isoflurane anesthesia. Chemogenetic Inhibition of PBN astrocytes increased the EEG delta power and BSR during isoflurane anesthesia. Conclusion: PBN astrocytes are a key neural substrate regulating wakefulness and emergence from isoflurane anesthesia.

7.
Clin Cardiol ; 42(11): 1087-1093, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31509271

RESUMEN

BACKGROUND: In-hospital cardiac arrest (IHCA) may be preventable, with patients often showing signs of physiological deterioration before an event. Our objective was to develop and validate a simple clinical prediction model to identify the IHCA risk among cardiac arrest (CA) patients hospitalized with acute coronary syndrome (ACS). HYPOTHESIS: A predicting model could help to identify the risk of IHCA among patients admitted with ACS. METHODS: We conducted a case-control study and analyzed 21 337 adult ACS patients, of whom 164 had experienced CA. Vital signs, demographic, and laboratory data were extracted from the electronic health record. Decision tree analysis was applied with 10-fold cross-validation to predict the risk of IHCA. RESULTS: The decision tree analysis detected seven explanatory variables, and the variables' importance is as follows: VitalPAC Early Warning Score (ViEWS), fatal arrhythmia, Killip class, cardiac troponin I, blood urea nitrogen, age, and diabetes. The development decision tree model demonstrated a sensitivity of 0.762, a specificity of 0.882, and an area under the receiver operating characteristic curve (AUC) of 0.844 (95% CI, 0.805 to 0.849). A 10-fold cross-validated risk estimate was 0.198, while the optimism-corrected AUC was 0.823 (95% CI, 0.786 to 0.860). CONCLUSIONS: We have developed and internally validated a good discrimination decision tree model to predict the risk of IHCA. This simple prediction model may provide healthcare workers with a practical bedside tool and could positively impact decision-making with regard to deteriorating patients with ACS.


Asunto(s)
Síndrome Coronario Agudo/complicaciones , Toma de Decisiones , Árboles de Decisión , Paro Cardíaco/diagnóstico , Medición de Riesgo/métodos , Triaje/métodos , Síndrome Coronario Agudo/diagnóstico , Anciano , China/epidemiología , Femenino , Estudios de Seguimiento , Paro Cardíaco/epidemiología , Paro Cardíaco/etiología , Humanos , Incidencia , Masculino , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tasa de Supervivencia/tendencias
8.
Am J Emerg Med ; 37(7): 1301-1306, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30401593

RESUMEN

AIMS: This retrospective study aims to analyze and explore the clinical characteristics, risk factors, and in-hospital outcomes - including return of spontaneous circulation (ROSC) and survival to discharge - of hospitalized patients admitted with acute coronary syndrome (ACS) suffering cardiac arrest. METHODS: ACS patients admitted to three tertiary hospitals in Fujian, China, were evaluated retrospectively from January 1, 2012 to December 30, 2016. Data were collected, based on the Utstein Style, for all cases of attempted resuscitation for IHCA. We analyzed patient characteristics, pre-event variables, event variables, and the main outcomes, including ROSC and survival to discharge, and identified the influencing factors on the outcomes. RESULTS: The total number of ACS admissions across the three hospitals during this study period was 21,337. Among these admissions, 320 ACS patients experienced IHCA (incidence: 1.50%); 134 (41.9%) patients experienced ROSC; and 68 (21.2%) survived to discharge. The findings indicated that four factors were associated with ROSC, including age <70 years-old, shockable rhythm, duration of resuscitation (≤15 min and 16-30 min), and PCI. Five factors were associated with survival to discharge, including age <70 years-old, shockable rhythm, the duration of resuscitation (≤15 min and 16-30 min), Killip ≤ II, and CCI ≤ 2. CONCLUSION: Younger age, shockable rhythm, and shorter duration of resuscitation were all factors demonstrated to be a predictor of ROSC and survival to hospital discharge.


Asunto(s)
Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/terapia , Reanimación Cardiopulmonar , Paro Cardíaco/mortalidad , Anciano , China , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Estudios Retrospectivos , Factores de Riesgo , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...