Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(3): 184281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218576

RESUMEN

Solution NMR spectroscopy of large protein systems is hampered by rapid signal decay, so most multidimensional studies focus on long-lived 1H-13C magnetization in methyl groups and/or backbone amide 1H-15N magnetization in an otherwise perdeuterated environment. Herein we demonstrate that it is possible to biosynthetically incorporate additional 1H-12C groups that possess long-lived magnetization using cost-effective partially deuterated or unlabeled amino acid precursors added to Escherichia coli growth media. This approach is applied to the outer membrane enzyme PagP in membrane-mimetic dodecylphosphocholine micelles. We were able to obtain chemical shift assignments for a majority of side chain 1H positions in PagP using nuclear Overhauser enhancements (NOEs) to connect them to previously assigned backbone 1H-15N groups and newly assigned 1H-13C methyl groups. Side chain methyl-to-aromatic NOEs were particularly important for confirming that the amphipathic α-helix of PagP packs against its eight-stranded ß-barrel, as indicated by previous X-ray crystal structures. Interestingly, aromatic NOEs suggest that some aromatic residues in PagP that are buried in the membrane bilayer are highly mobile in the micellar environment, like Phe138 and Phe159. In contrast, Tyr87 in the middle of the bilayer is quite rigid, held in place by a hydrogen bonded network extending to the surface that resembles a classic catalytic triad: Tyr87-His67-Asp61. This hydrogen bonded arrangement of residues is not known to have any catalytic activity, but we postulate that its role is to immobilize Tyr87 to facilitate packing of the amphipathic α-helix against the ß-barrel.


Asunto(s)
Aminoácidos , Proteínas de Escherichia coli , Aminoácidos/metabolismo , Proteínas de Escherichia coli/química , Espectroscopía de Resonancia Magnética , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Hidrógeno , Aciltransferasas/química
2.
Nutrients ; 15(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986109

RESUMEN

Vitamin D is known to modulate human immune responses, and vitamin D deficiency is associated with increased susceptibility to infection. However, what constitutes sufficient levels or whether vitamin D is useful as an adjuvant therapeutic is debated, much in part because of inadequate elucidation of mechanisms underlying vitamin D's immune modulatory function. Cathelicidin antimicrobial peptide (CAMP) has potent broad-spectrum activity, and the CAMP gene is regulated in human innate immune cells by active 1,25(OH)2D3, a product of hydroxylation of inactive 25(OH)D3 by CYP27B1-hydroxylase. We developed a CRISPR/Cas9-edited human monocyte-macrophage cell line containing the mCherry fluorescent reporter gene at the 3' end of the endogenous CAMP gene. The High Throughput CAMP Assay (HiTCA) developed here is a novel tool for evaluating CAMP expression in a stable cell line that is scalable for a high-throughput workflow. Application of HiTCA to serum samples from a small number of human donors (n = 10) showed individual differences in CAMP induction that were not fully accounted for by the serum vitamin D metabolite status of the host. As such, HiTCA may be a useful tool that can advance our understanding of the human vitamin D-dependent antimicrobial response, which is being increasingly appreciated for its complexity.


Asunto(s)
Antiinfecciosos , Vitamina D , Humanos , Vitamina D/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Catelicidinas/genética , Vitaminas , Antiinfecciosos/farmacología , Receptores de Calcitriol/genética
3.
Front Physiol ; 13: 892979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755445

RESUMEN

Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 µM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 µM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 µM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.

4.
Front Immunol ; 12: 729837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603305

RESUMEN

We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Adenovirus Humanos/metabolismo , Administración Oral , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , Citocinas/sangre , Inmunización Secundaria/métodos , Inmunoglobulina G/sangre , Pulmón/virología , Macaca mulatta , Nariz/virología , Fosfoproteínas/inmunología , Dominios Proteicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación , Replicación Viral/inmunología
5.
J Mol Biol ; 433(13): 167010, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33901537

RESUMEN

Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the "active" orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s-1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s-1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17-23 s-1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a "dormant" orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.


Asunto(s)
Cardiomiopatía Dilatada/genética , Mutación , Miocardio/metabolismo , Troponina C/genética , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Tropomiosina/química , Tropomiosina/metabolismo , Troponina C/química , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo , Troponina T/química , Troponina T/metabolismo
6.
ACS Appl Mater Interfaces ; 12(20): 23399-23409, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32345022

RESUMEN

Polarity-switching photopatternable guidelines can be directly used to both orient and direct the self-assembly of block copolymers. We report the orientation and alignment of poly(styrene-block-4-trimethylsilylstyrene) (PS-b-PTMSS) with a domain periodicity, L0, of 44 nm on thin photopatternable grafting surface treatments (pGSTs) and cross-linkable surface treatments (pXSTs), containing acid-labile 4-tert-butoxystyrene monomer units. The surface treatment was exposed using electron beam lithography to create well-defined linear arrays of neutral and preferential regions. Directed self-assembly (DSA) of PS-b-PTMSS with much lower defectivity was observed on pXST than on pGST guidelines. The study of the effect of film thickness on photoacid diffusion by Fourier transform infrared spectroscopy and near-edge X-ray absorption fine structure spectroscopy suggested slower diffusion in thinner films, potentially enabling production of guidelines with sharper interfaces between the unexposed and exposed lines, and thus, the DSA of PS-b-PTMSS on thinner pXST guidelines resulted in better alignment control.

7.
mSphere ; 4(3)2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31167948

RESUMEN

Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


Asunto(s)
Células Dendríticas/enzimología , Células Dendríticas/inmunología , Mycobacterium tuberculosis/inmunología , Vitamina A/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/inmunología , Adulto , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/inmunología , Células Cultivadas , Medios de Cultivo Condicionados/química , Células Dendríticas/microbiología , Humanos , Pulmón/microbiología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/microbiología , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/inmunología , Tuberculosis/microbiología
8.
Biochim Biophys Acta Gen Subj ; 1863(4): 661-671, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659884

RESUMEN

BACKGROUND: Cardiac troponin I (cTnI) has two flexible tails that control the cardiac cycle. The C-terminal tail, cTnI135-209, binds actin to shut off cardiac muscle contraction, whereas the competing calcium-dependent binding of the switch region, cTnI146-158, by cardiac troponin C (cTnC) triggers contraction. The N-terminal tail, cTnI1-37, regulates the calcium affinity of cTnC. cTnI is known to be susceptible to proteolytic cleavage by matrix metalloproteinase-2 (MMP-2) and calpain, two intracellular proteases implicated in ischemia-reperfusion injury. METHODS: Soluble fragments of cTnI containing its N- and C-terminal tails, cTnI1-77 and cTnI135-209, were highly expressed and purified from E. coli. We performed in vitro proteolysis studies of both constructs using liquid chromatography-mass spectrometry and solution NMR studies of the C-terminal tail. RESULTS: cTnI135-209 is intrinsically disordered, though it contains three regions with helical propensity (including the switch region) that acquire more structure upon actin binding. We identified three precise MMP-2 cleavage sites at cTnI P17-I18, A156-L157, and G199-M200. In contrast, calpain-2 has numerous cleavage sites throughout Y25-T30 and A152-A160. The critical cTnI switch region is targeted by both proteases. CONCLUSIONS: Both N-terminal and C-terminal tails of cTnI are susceptible to cleavage by MMP-2 and calpain-2. Binding to cTnC or actin confers some protection to proteolysis, which can be understood in terms of their interactions as probed by NMR studies. GENERAL SIGNIFICANCE: cTnI is an important marker of intracellular proteolysis in cardiomyocytes, given its many protease-specific cut sites, high natural abundance, indispensable functional role, and clinical use as gold standard biomarker of myocardial injury.


Asunto(s)
Troponina I/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Calpaína/metabolismo , Bovinos , Cromatografía Liquida , Corazón , Humanos , Espectrometría de Masas , Metaloproteinasa 2 de la Matriz/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Troponina I/química , Troponina I/aislamiento & purificación
9.
Biochem Biophys Rep ; 16: 145-151, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30417133

RESUMEN

The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1-77 and cTnI135-209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1-77 complex nor the cTnC-cTnI135-209 complex binds to MCI-154. Since residues 39-60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin.

10.
PLoS Negl Trop Dis ; 12(10): e0006815, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30300363

RESUMEN

Following infection, virulent mycobacteria persist and grow within the macrophage, suggesting that the intrinsic activation of an innate antimicrobial response is subverted by the intracellular pathogen. For Mycobacterium leprae, the intracellular bacterium that causes leprosy, the addition of exogenous innate or adaptive immune ligands to the infected monocytes/macrophages was required to detect a vitamin D-dependent antimicrobial activity. We investigated whether there is an intrinsic immune response to M. leprae in macrophages that is inhibited by the pathogen. Upon infection of monocytes with M. leprae, there was no upregulation of CYP27B1 nor its enzymatic activity converting the inactive prohormone form of vitamin D (25-hydroxyvitamin D) to the bioactive form (1,25α-dihydroxyvitamin D). Given that M. leprae-induced type I interferon (IFN) inhibited monocyte activation, we blocked the type I IFN receptor (IFNAR), revealing the intrinsic capacity of monocytes to recognize M. leprae and upregulate CYP27B1. Consistent with these in vitro studies, an inverse relationship between expression of CYP27B1 vs. type I IFN downstream gene OAS1 was detected in leprosy patient lesions, leading us to study cytokine-derived macrophages (MΦ) to model cellular responses at the site of disease. Infection of IL-15-derived MΦ, similar to MΦ in lesions from the self-limited form of leprosy, with M. leprae did not inhibit induction of the vitamin D antimicrobial pathway. In contrast, infection of IL-10-derived MΦ, similar to MΦ in lesions from patients with the progressive form of leprosy, resulted in induction of type I IFN and suppression of the vitamin D directed pathway. Importantly, blockade of the type I IFN response in infected IL-10 MΦ decreased M. leprae viability. These results indicate that M. leprae evades the intrinsic capacity of human monocytes/MΦ to activate the vitamin D-mediated antimicrobial pathway via the induction of type I IFN.


Asunto(s)
Evasión Inmune , Factores Inmunológicos/farmacología , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium leprae/fisiología , Vitamina D/farmacología , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/biosíntesis , Humanos , Inmunidad Innata , Mycobacterium leprae/inmunología , Regulación hacia Arriba
11.
PLoS Negl Trop Dis ; 12(7): e0006608, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29965969

RESUMEN

BACKGROUND: The immune system depends on effector pathways to eliminate invading pathogens from the host in vivo. Macrophages (MΦ) of the innate immune system are armed with vitamin D-dependent antimicrobial responses to kill intracellular microbes. However, how the physiological levels of vitamin D during MΦ differentiation affect phenotype and function is unknown. METHODOLOGY/PRINCIPAL: The human innate immune system consists of divergent MΦ subsets that serve distinct functions in vivo. Both IL-15 and IL-10 induce MΦ differentiation, but IL-15 induces primary human monocytes to differentiate into antimicrobial MΦ (IL-15 MΦ) that robustly express the vitamin D pathway. However, how vitamin D status alters IL-15 MΦ phenotype and function is unknown. In this study, we found that adding 25-hydroxyvitamin D3 (25D3) during the IL-15 induced differentiation of monocytes into MΦ increased the expression of the antimicrobial peptide cathelicidin, including both CAMP mRNA and the encoded protein cathelicidin in a dose-dependent manner. The presence of physiological levels of 25D during differentiation of IL-15 MΦ led to a significant vitamin D-dependent antimicrobial response against intracellular Mycobacterium leprae but did not change the phenotype or phagocytic function of these MΦ. These data suggest that activation of the vitamin D pathway during IL-15 MΦ differentiation augments the antimicrobial response against M. leprae infection. CONCLUSIONS/SIGNIFICANCE: Our data demonstrates that the presence of vitamin D during MΦ differentiation bestows the capacity to mount an antimicrobial response against M. leprae.


Asunto(s)
Lepra/inmunología , Macrófagos/inmunología , Mycobacterium leprae/fisiología , Vitamina D/inmunología , Diferenciación Celular , Humanos , Interleucina-10/inmunología , Interleucina-15/inmunología , Lepra/microbiología , Macrófagos/citología , Macrófagos/microbiología
12.
Ann Dermatol ; 29(6): 688-698, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29200756

RESUMEN

BACKGROUND: Acne vulgaris is a disease of the pilosebaceous unit characterized by increased sebum production, hyperkeratinization, and immune responses to Propionibacterium acnes (PA). Here, we explore a possible mechanism by which a lipid receptor, G2A, regulates immune responses to a commensal bacterium. OBJECTIVE: To elucidate the inflammatory properties of G2A in monocytes in response to PA stimulation. Furthermore, our study sought to investigate pathways by which lipids modulate immune responses in response to PA. METHODS: Our studies focused on monocytes collected from human peripheral blood mononuclear cells, the monocytic cell line THP-1, and a lab strain of PA. Our studies involved the use of enzyme-linked immunosorbent, Western blot, reverse transcription polymerase chain reaction, small interfering RNA (siRNA), and microarray analysis of human acne lesions in the measurements of inflammatory markers. RESULTS: G2A gene expression is higher in acne lesions compared to normal skin and is inducible by the acne therapeutic, 13-cis-retinoic acid. In vitro, PA induces both the Toll-like receptor 2-dependent expression of G2A as well as the production of the G2A ligand, 9-hydroxyoctadecadienoic acid, from human monocytes. G2A gene knockdown through siRNA enhances PA stimulation of interleukin (IL)-6, IL-8, and IL-1ß possibly through increased activation of the ERK1/2 MAP kinase and nuclear factor kappa B p65 pathways. CONCLUSION: G2A may play a role in quelling inflammatory cytokine response to PA, revealing G2A as a potential attenuator of inflammatory response in a disease associated with a commensal bacterium.

13.
Biochemistry ; 56(45): 6015-6029, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29068222

RESUMEN

Perdeuteration with selective 1H,13C-enrichment of methyl groups has enabled solution NMR studies of large (>30 kDa) protein systems. However, we propose that for all non-methyl positions, only magnetization originating from 1H-12C groups is sufficiently long-lived, and it can be transferred via through-space NOEs to slowly relaxing 1H-15N or 1H-13C methyl groups to achieve multidimensional solution NMR. We demonstrate stereoselective 1H,12C-labeling by adding relatively inexpensive unlabeled carbon sources to Escherichia coli growth media in D2O. Using our model system, a mutant WW domain from human Pin1, we compare deuteration patterns in 19 amino acids (all except cysteine). Protein grown using glucose as the sole carbon source had high levels of protonation in aromatic rings and the Hß positions of serine and tryptophan. In contrast, using our FROMP media (fumarate, rhamnose, oxalate, malonate, pyruvate), stereoselective protonation of Hß2 with deuteration at Hα and Hß3 was achieved in Asp, Asn, Lys, and Met residues. In solution NMR, stereospecific chemical shift assignments for Hß are typically obtained in conjunction with χ1 dihedral angle determinations using 3-bond J-coupling (3JN-Hß, 3JCO-Hß, 3JHα-Hß) experiments. However, due to motional averaging, the assumption of a pure rotameric state can yield incorrect χ1 dihedral angles with incorrect stereospecific assignments. This was the case for three residues in the Pin1 WW domain (Lys28, Met30, and Asn44). Thus, stereoselective 1H,12C-labeling will be useful not only for NMR studies of large protein systems, but also for determining side chain rotamers and dynamics in any protein system.


Asunto(s)
Aminoácidos/química , Carbono/química , Deuterio/química , Escherichia coli/metabolismo , Fumaratos/química , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Asparagina/química , Ácido Aspártico/química , Medios de Cultivo , Humanos , Lisina/química , Metionina/química , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Estereoisomerismo
14.
J Biomed Sci ; 23(1): 90, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931227

RESUMEN

BACKGROUND: Histone deacetylase (HDAC) activities modify chromatin structure and play a role in learning and memory during developmental processes. Studies of adult mice suggest HDACs are involved in neural network remodeling in brain repair, but its function in drug addiction is less understood. We aimed to examine in vivo HDAC5 expression in a preclinical model of amphetamine-induced sensitization (AIS) of behavior. We generated specific contrast agents to measure HDAC5 levels by in vivo molecular contrast-enhanced (MCE) magnetic resonance imaging (MRI) in amphetamine-naïve mice as well as in mice with AIS. To validate the MRI results we used ex vivo methods including in situ hybridization, RT-PCR, immunohistochemistry, and transmision electron microscopy. METHODS: We compared the expression of HDAC5 mRNA in an acute exposure paradigm (in which animals experienced a single drug exposure [A1]) and in a chronic-abstinence-challenge paradigm (in which animals were exposed to the drug once every other day for seven doses, then underwent 2 weeks of abstinence followed by a challenge dose [A7WA]). Control groups for each of these exposure paradigms were given saline. To delineate how HDAC5 expression was related to AIS, we compared the expression of HDAC5 mRNA at sequences where no known microRNA (miR) binds (hdac5AS2) and at sequences where miR-2861 is known to bind (miD2861). We synthesized and labeled phosphorothioated oligonucleic acids (sODN) of hdac5AS2 or miD2861 linked to superparamagentic iron oxide nanoparticles (SPION), and generated HDAC5-specific contrast agents (30 ± 20 nm, diameter) for MCE MRI; the same sequences were used for primers for TaqMan® analysis (RT-qPCR) in ex vivo validation. In addition, we used subtraction R2* maps to identify regional HDAC5 expression. RESULTS: Naïve C57black6 mice that experience acute exposure to amphetamine (4 mg/kg, by injection intraperitoneally) show expression of both total and phosphorylated (S259) HDAC5 antigens in GFAP+ and GFAP- cells, but the appearance of these cells was attenuated in the chronic paradigm. We found that MCE MRI reports HDAC5 mRNA with precision in physiological conditions because the HDAC5 mRNA copy number reported by TaqMan analysis was positively correlated (with a linear coefficient of 1.0) to the ΔR2* values (the frequency of signal reduction above background, 1/s) measured by MRI. We observed SPION-mid2861 as electron dense nanoparticles (EDNs) of less than 30 nm in the nucleus of the neurons, macrophages, and microglia, but not in glia and endothelia. We found no preferential distribution in any particular type of neural cells, but observed scattered EDNs of 60-150 nm (dia) in lysosomes. In the acute paradigm, mice pretreated with miD2861 (1.2 mmol/kg, i.p./icv) exhibited AIS similar to that exibited by mice in the chronic exposure group, which exhibited null response to mid2861 pretreatment. Moreover, SPION-miD2861 identified enhanced HDAC5 expression in the lateral septum and the striatum after amphetamine, where we found neurprogenitor cells coexpressing NeuN and GFAP. CONCLUSIONS: We conclude that miD2681 targets HDAC5 mRNA with precision similar to that of RT-PCR. Our MCE MRI detects RNA-bound nanoparticles (NPs) in vivo, and ex vivo validation methods confirm that EDNs do not accumulate in any particular cell type. As HDAC5 expression may help nullify AIS and identify progenitor cells, the precise delivery of miD2861 may serve as a vehicle for monitoring network remodeling with target specificity and signal sensitivity after drug exposure that identifies brain repair processes in adult animals.


Asunto(s)
Anfetamina/administración & dosificación , Encéfalo/metabolismo , Histona Desacetilasas/genética , MicroARNs/genética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/metabolismo , Humanos , Imagen por Resonancia Magnética , Ratones , MicroARNs/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/química , Red Nerviosa
15.
PLoS Pathog ; 12(6): e1005705, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27355424

RESUMEN

Triggering antimicrobial mechanisms in macrophages infected with intracellular pathogens, such as mycobacteria, is critical to host defense against the infection. To uncover the unique and shared antimicrobial networks induced by the innate and adaptive immune systems, gene expression profiles generated by RNA sequencing (RNAseq) from human monocyte-derived macrophages (MDMs) activated with TLR2/1 ligand (TLR2/1L) or IFN-γ were analyzed. Weighed gene correlation network analysis identified modules of genes strongly correlated with TLR2/1L or IFN-γ that were linked by the "defense response" gene ontology term. The common TLR2/1L and IFN-γ inducible human macrophage host defense network contained 16 antimicrobial response genes, including S100A12, which was one of the most highly induced genes by TLR2/1L. There is limited information on the role of S100A12 in infectious disease, leading us to test the hypothesis that S100A12 contributes to host defense against mycobacterial infection in humans. We show that S100A12 is sufficient to directly kill Mycobacterium tuberculosis and Mycobacterium leprae. We also demonstrate that S100A12 is required for TLR2/1L and IFN-γ induced antimicrobial activity against M. leprae in infected macrophages. At the site of disease in leprosy, we found that S100A12 was more strongly expressed in skin lesions from tuberculoid leprosy (T-lep), the self-limiting form of the disease, compared to lepromatous leprosy (L-lep), the progressive form of the disease. These data suggest that S100A12 is part of an innate and adaptive inducible antimicrobial network that contributes to host defense against mycobacteria in infected macrophages.


Asunto(s)
Lepra/inmunología , Macrófagos/inmunología , Proteína S100A12/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Macrófagos/microbiología , Infecciones por Mycobacterium/inmunología , Mycobacterium leprae/inmunología , Mycobacterium tuberculosis/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
16.
mSphere ; 1(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303719

RESUMEN

Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion.

17.
J Biomed Sci ; 23: 21, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26841904

RESUMEN

BACKGROUND: Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. METHODS: We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 µl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. RESULTS: In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. CONCLUSION: Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. This study has implications for design for the treatment of drug exposure and perhaps Parkinson's dementia.


Asunto(s)
Anfetamina/toxicidad , Aptámeros de Nucleótidos/farmacología , Conducta Animal/efectos de los fármacos , Monoaminooxidasa/biosíntesis , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Masculino , Ratones
18.
FASEB J ; 30(2): 612-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26443823

RESUMEN

Delivery of antibodies to monitor key biomarkers of retinopathy in vivo represents a significant challenge because living cells do not take up immunoglobulins to cellular antigens. We met this challenge by developing novel contrast agents for retinopathy, which we used with magnetic resonance imaging (MRI). Biotinylated rabbit polyclonal to chick IgY (rIgPxcIgY) and phosphorylthioate-modified oligoDNA (sODN) with random sequence (bio-sODN-Ran) were conjugated with NeutrAvidin-activated superparamagnetic iron oxide nanoparticles (SPION). The resulting Ran-SPION-rIgPxcIgY carries chick polyclonal to microtubule-associated protein 2 (MAP2) as Ran-SPION-rIgP/cIgY-MAP2, or to rhodopsin (Rho) as anti-Rho-SPION-Ran. We examined the uptake of Ran-SPION-rIgP/cIgY-MAP2 or SPION-rIgP/cIgY-MAP2 in normal C57black6 mice (n = 3 each, 40 µg/kg, i.c.v.); we found retention of Ran-SPION-rIgP/cIgY-MAP2 using molecular contrast-enhanced MRI in vivo and validated neuronal uptake using Cy5-goat IgPxcIgY ex vivo. Applying this novel method to monitor retinopathy in a bilateral carotid artery occlusion-induced ocular ischemia, we observed pericytes (at d 2, using Gd-nestin, by eyedrop solution), significant photoreceptor degeneration (at d 20, using anti-Rho-SPION-Ran, eyedrops, P = 0.03, Student's t test), and gliosis in Müller cells (at 6 mo, using SPION-glial fibrillary acidic protein administered by intraperitoneal injection) in surviving mice (n ≥ 5). Molecular contrast-enhanced MRI results were confirmed by optical and electron microscopy. We conclude that chimera and molecular contrast-enhanced MRI provide sufficient sensitivity for monitoring retinopathy and for theranostic applications.


Asunto(s)
Lesiones Oculares/metabolismo , Isquemia/patología , Enfermedades de la Retina/metabolismo , Rodopsina/metabolismo , Animales , Isquemia Encefálica , Arterias Carótidas , Medios de Contraste , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología
19.
Protein Expr Purif ; 116: 133-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26297994

RESUMEN

Many proteins contain intrinsically disordered regions that are highly solvent-exposed and susceptible to post-translational modifications. Studying these protein segments is critical to understanding their physiologic regulation, but proteolytic degradation can make them difficult to express and purify. We have designed a new protein expression vector that fuses the target protein to the N-terminus of the integral membrane protein, PagP. The two proteins are connected by a short linker containing the sequence SRHW, previously shown to be optimal for nickel ion-catalyzed cleavage. The methodology is demonstrated for an intrinsically disordered segment of cardiac troponin I. cTnI[135-209]-SRHW-PagP-His6 fusion protein was overexpressed in Escherichia coli, accumulating in insoluble inclusion bodies. The protein was solubilized, purified using nickel affinity chromatography, and then cleaved with 0.5mM NiSO4 at pH 9.0 and 45 °C, all in 6M guanidine-HCl. Nickel ion-catalyzed peptide bond hydrolysis is an effective chemical cleavage technique under denaturing conditions that preclude the use of proteases. Moreover, nickel-catalyzed cleavage is more specific than the most commonly used agent, cyanogen bromide, which cleaves C-terminal to methionine residues. We were able to produce 15 mg of purified cTnI[135-209] from 1L of M9 minimal media using this protocol. The methodology is more generally applicable to the production of intrinsically disordered protein segments.


Asunto(s)
Aciltransferasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Cuerpos de Inclusión/genética , Proteínas Intrínsecamente Desordenadas/genética , Níquel/metabolismo , Aciltransferasas/química , Aciltransferasas/aislamiento & purificación , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Hidrólisis , Cuerpos de Inclusión/química , Cuerpos de Inclusión/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/aislamiento & purificación , Proteínas Intrínsecamente Desordenadas/metabolismo , Datos de Secuencia Molecular , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...