Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2403525, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762765

RESUMEN

Heterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal-support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub-2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS-Ru-NCs/TiN) via a special Ru-Ti interaction using the high-temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru-Ti interfacial perimeter. HTS-Ru-NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm-2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS-Ru-NCs/TiN yield 1.0 A cm-2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.

2.
Angew Chem Int Ed Engl ; 63(8): e202316029, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38168107

RESUMEN

RuO2 is one of the benchmark electrocatalysts used as the anode material in proton exchange membrane water electrolyser. However, its long-term stability is compromised due to the participation of lattice oxygen and metal dissolution during oxygen evolution reaction (OER). In this work, weakened covalency of Ru-O bond was tailored by introducing tensile strain to RuO6 octahedrons in a binary Ru-Sn oxide matrix, prohibiting the participation of lattice oxygen and the dissolution of Ru, thereby significantly improving the long-term stability. Moreover, the tensile strain also optimized the adsorption energy of intermediates and boosted the OER activity. Remarkably, the RuSnOx electrocatalyst exhibited excellent OER activity in 0.1 M HClO4 and required merely 184 mV overpotential at a current density of 10 mA cm-2 . Moreover, it delivered a current density of 10 mA cm-2 for at least 150 h with negligible potential increase. This work exemplifies an effective strategy for engineering Ru-based catalysts with extraordinary performance toward water splitting.

3.
ACS Sens ; 8(10): 3836-3844, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37782772

RESUMEN

An ability to real-time and continuously monitor ammonium/ammonia profiles of coastal waters over a prolonged period in a simple and maintenance-free fashion would enable economic conducting large-scale assessments, providing the needed scientific insights to better control and mitigate the impact of eutrophication on coastal ecosystems. However, this is a challenging task due to the lack of capable sensors. Here, we demonstrate the use of a membrane-based conductometric ammonia sensing probe (CASP) for real-time monitoring of ammonia levels in coastal waters. A boric acid/glycerol receiving phase is investigated and innovatively utilized to overcome the high salinity of coastal water-induced analytical errors. A calibration-free approach is used to eliminate the need for ongoing calibration, while the issues concerning practical applications, such as salinity variation, ammonia intake capability, and biofouling, are systematically investigated. The field deployment at an estuary confluence water site over a half-moon cycle period confirms that CASP is capable of continuously monitoring the ammonia profile of coastal waters in real-time with high resolution and accuracy to unveil the dynamic ammonia concentration changes over a prolonged period.


Asunto(s)
Amoníaco , Compuestos de Amonio , Amoníaco/análisis , Ecosistema , Monitoreo del Ambiente , Agua
4.
Angew Chem Int Ed Engl ; 62(38): e202309784, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539978

RESUMEN

Metal single atoms (SAs) anchored in carbon support via coordinating with N atoms are efficient active sites to oxygen reduction reaction (ORR). However, rational design of single atom catalysts with highly exposed active sites is challenging and urgently desirable. Herein, an anion exchange strategy is presented to fabricate Fe-N4 moieties anchored in hierarchical carbon nanoplates composed of hollow carbon spheres (Fe-SA/N-HCS). With the coordinating O atoms are substituted by N atoms, Fe SAs with Fe-O4 configuration are transformed into the ones with Fe-N4 configuration during the thermal activation process. Insights into the evolution of central atoms demonstrate that the SAs with specific coordination environment can be obtained by modulating in situ anion exchange process. The strategy produces a large quantity of electrochemical accessible site and high utilization rate of Fe-N4 . Fe-SA/N-HCS shows excellent ORR electrocatalytic performance with half-wave potential of 0.91 V (vs. RHE) in 0.1 M KOH, and outstanding performance when used in rechargeable aqueous and flexible Zn-air batteries. The evolution pathway for SAs demonstrated in this work offers a novel strategy to design SACs with various coordination environment and enhanced electrocatalytic activity.

5.
Adv Mater ; 35(6): e2203836, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900361

RESUMEN

Solar-energy-powered photocatalytic fuel production and chemical synthesis are widely recognized as viable technological solutions for a sustainable energy future. However, the requirement of high-performance photocatalysts is a major bottleneck. Halide perovskites, a category of diversified semiconductor materials with suitable energy-band-enabled high-light-utilization efficiencies, exceptionally long charge-carrier-diffusion-length-facilitated charge transport, and readily tailorable compositional, structural, and morphological properties, have emerged as a new class of photocatalysts for efficient hydrogen evolution, CO2 reduction, and various organic synthesis reactions. Despite the noticeable progress, the development of high-performance halide perovskite photocatalysts (HPPs) is still hindered by several key challenges: the strong ionic nature and high hydrolysis tendency induce instability and an unsatisfactory activity due to the need for a coactive component to realize redox processes. Herein, the recently developed advanced strategies to enhance the stability and photocatalytic activity of HPPs are comprehensively reviewed. The widely applicable stability enhancement strategies are first articulated, and the activity improvement strategies for fuel production and chemical synthesis are then explored. Finally, the challenges and future perspectives associated with the application of HPPs in efficient production of fuels and value-added chemicals are presented, indicating the irreplaceable role of the HPPs in the field of photocatalysis.

6.
Adv Mater ; 34(29): e2202854, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35686844

RESUMEN

The electrocatalytic CO2 RR to produce value-added chemicals and fuels has been recognized as a promising means to reduce the reliance on fossil resources; it is, however, hindered due to the lack of high-performance electrocatalysts. The effectiveness of sculpturing metal/metal oxides (MMO) heterostructures to enhance electrocatalytic performance toward CO2 RR has been well documented, nonetheless, the precise synergistic mechanism of MMO remains elusive. Herein, an in operando electrochemically synthesized Cr2 O3 -Ag heterostructure electrocatalyst (Cr2 O3 @Ag) is reported for efficient electrocatalytic reduction of CO2 to CO. The obtained Cr2 O3 @Ag can readily achieve a superb FECO of 99.6% at -0.8 V (vs RHE) with a high JCO of 19.0 mA cm-2 . These studies also confirm that the operando synthesized Cr2 O3 @Ag possesses high operational stability. Notably, operando Raman spectroscopy studies reveal that the markedly enhanced performance is attributable to the synergistic Cr2 O3 -Ag heterostructure induced stabilization of CO2 •- /*COOH intermediates. DFT calculations unveil that the metallic-Ag-catalyzed CO2 reduction to CO requires a 1.45 eV energy input to proceed, which is 0.93 eV higher than that of the MMO-structured Cr2 O3 @Ag. The exemplified approaches in this work would be adoptable for design and development of high-performance electrocatalysts for other important reactions.

7.
Nanomicro Lett ; 14(1): 121, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505158

RESUMEN

Bismuth-based materials (e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO2 to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO2RR conditions. A synthetic approach is developed to electrochemically convert BiOCl into Cl-containing subcarbonate (Bi2O2(CO3)xCly) under operando CO2RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi2O2(CO3)xCly via a cathodic potential-promoted anion-exchange process. The operando synthesized Bi2O2(CO3)xCly can tolerate - 1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi2O2CO3, the formation of metallic Bio occurs at - 0.6 V versus RHE. At - 0.8 V versus RHE, Bi2O2(CO3)xCly can readily attain a FEHCOO- of 97.9%, much higher than that of the pure Bi2O2CO3 (81.3%). DFT calculations indicate that differing from the pure Bi2O2CO3-catalyzed CO2RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of HCOO- over Bi2O2(CO3)xCly has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.

8.
Small ; 18(10): e2105761, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35266313

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) are promising in stationary grid energy storage due to their advantages in safety and cost-effectiveness, and the search for competent cathode materials is one core task in the development of ZIBs. Herein, the authors design a 2D heterostructure combining amorphous vanadium pentoxide and electrochemically produced graphene oxide (EGO) using a fast and scalable spray drying technique. The unique 2D heterostructured xerogel is achieved by controlling the concentration of EGO in the precursor solution. Driven by the improved electrochemical kinetics, the resultant xerogel can deliver an excellent rate capability (334 mAh g-1 at 5 A g-1 ) as well as a high specific capacity (462 mAh g-1 at 0.2 A g-1 ) as the cathode material in ZIB. It is also shown that the coin cell constructed based on spray-dried xerogel can output steady, high energy densities over a broad power density window. This work provides a scalable and cost-effective approach for making high performance electrode materials from cheap sources through existing industrialized materials processing.

9.
J Am Chem Soc ; 144(13): 6028-6039, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35302356

RESUMEN

Water-alkaline electrolysis holds a great promise for industry-scale hydrogen production but is hindered by the lack of enabling hydrogen evolution reaction electrocatalysts to operate at ampere-level current densities under low overpotentials. Here, we report the use of hydrogen spillover-bridged water dissociation/hydrogen formation processes occurring at the synergistically hybridized Ni3S2/Cr2S3 sites to incapacitate the inhibition effect of high-current-density-induced high hydrogen coverage at the water dissociation site and concurrently promote Volmer/Tafel processes. The mechanistic insights critically important to enable ampere-level current density operation are depicted from the experimental and theoretical studies. The Volmer process is drastically boosted by the strong H2O adsorption at Cr5c sites of Cr2S3, the efficient H2O* dissociation via a heterolytic cleavage process (Cr5c-H2O* + S3c(#) → Cr5c-OH* + S3c-H#) on the Cr5c/S3c sites in Cr2S3, and the rapid desorption of OH* from Cr5c sites of Cr2S3 via a new water-assisted desorption mechanism (Cr5c-OH* + H2O(aq) → Cr5c-H2O* + OH-(aq)), while the efficient Tafel process is achieved through hydrogen spillover to rapidly transfer H# from the synergistically located H-rich site (Cr2S3) to the H-deficient site (Ni3S2) with excellent hydrogen formation activity. As a result, the hybridized Ni3S2/Cr2S3 electrocatalyst can readily achieve a current density of 3.5 A cm-2 under an overpotential of 251 ± 3 mV in 1.0 M KOH electrolyte. The concept exemplified in this work provides a useful means to address the shortfalls of ampere-level current-density-tolerant Hydrogen evolution reaction (HER) electrocatalysts.

10.
Adv Mater ; 34(2): e2104667, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34693576

RESUMEN

Electronic structure engineering via integrating two defect structures with opposite modulation effects holds the key to fully unlocking the power of a catalyst. Herein, an interpolation principle is proposed to activate CoOOH via W doping and Co vacancies for the oxygen evolution reaction. Density functional theory suggests opposite roles for the W dopant and the Co vacancy but a synergy between them in tuning the electronic states of the Co site, leading to near-ideal intermediate energetics and dramatically lowered catalytic overpotential. Experimental studies confirm the modulation of the electronic structure and validate the greatly enhanced catalytic activity with a small overpotential of 298.5 mV to drive 50 mA cm-2 . The discovery of the interpolation between dopants and vacancies opens up a new methodology to design efficient catalysts for various electrochemical reactions.

11.
Nanoscale ; 13(48): 20324-20353, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34870672

RESUMEN

Electrocatalytic energy conversion between electricity and chemical bonding energy is realized through redox reactions with multiple charge transfer steps at the electrode-electrolyte interface. The surface atomic structure of the electrode materials, if appropriately designed, will provide an energetically affordable pathway with individual reaction intermediates that not only reduce the thermodynamic energy barrier but also allow an acceptably fast kinetic rate of the overall redox reaction. As one of the most abundant and stable forms, oxides of transitional metals demonstrated promising electrocatalytic activities towards multiple important chemical reactions. In this topical review, we attempt to discuss the possible avenues to construct the electrocatalytic active surface for this important class of materials for two essential chemical reactions for water splitting. A general introduction of the electrochemical water splitting process on the electrocatalyst surface with applied potential will be provided, followed by a discussion on the fundamental charge transfers and the mechanism. As the generally perceived active sites are chemical reaction dependent, we offer a general overview of the possible approaches to construct or create electrocatalytically active sites in the context of surface atomic structure engineering. The review concludes with perspectives that summarize challenges and opportunities in electrocatalysis and how these can be addressed to unlock the electrocatalytic potentials of the metal oxide materials.

12.
Environ Pollut ; 289: 117850, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358875

RESUMEN

An ability to real-time, continuously monitor soil ammonia emission profiles under diverse meteorological conditions with high temporal resolution in a simple and maintenance-free fashion can provide the urgently needed scientific insights to mitigate ammonia emission to the atmosphere and improve agricultural fertilization practice. Here, we report an open-chamber deployment unit embedded a gas-permeable membrane-based conductometric sensing probe (OC-GPMCP) capable of on-site continuously monitoring soil ammonia emission flux ( [Formula: see text] ) -time (t) profiles without the need for ongoing calibration. The developed OC-GPMCPs were deployed to a sugarcane field and a cattle farm under different fertilization/meteorological conditions to exemplify their real-world applicability for monitoring soil ammonia emission from agricultural land and livestock farm, respectively. The obtained [Formula: see text] - t profiles from the sugarcane field unveil that the ammonia emission rate is largely determined by fertilization methods and meteorological conditions. While the [Formula: see text] - t profiles from the cattle farm can be decisively correlated to various meteorological conditions. The reported OC-GPMCP is cheap to fabricate, easy to deploy, and maintenance-free to operate. These advantageous features make OC-GPMCP an effective analytical tool for large-scale soil ammonia emission assessment under diverse meteorological conditions, providing critically important scientific insights to mitigate ammonia emission into the atmosphere and improve agricultural fertilization practice.


Asunto(s)
Amoníaco , Suelo , Agricultura , Amoníaco/análisis , Animales , Atmósfera , Bovinos , Granjas , Fertilizantes/análisis
13.
Adv Mater ; 32(42): e2004670, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32939887

RESUMEN

The development of oxygen reduction reaction (ORR) electrocatalysts based on earth-abundant nonprecious materials is critically important for sustainable large-scale applications of fuel cells and metal-air batteries. Herein, a hetero-single-atom (h-SA) ORR electrocatalyst is presented, which has atomically dispersed Fe and Ni coanchored to a microsized nitrogen-doped graphitic carbon support with unique trimodal-porous structure configured by highly ordered macropores interconnected through mesopores. Extended X-ray absorption fine structure spectra confirm that Fe- and Ni-SAs are affixed to the carbon support via FeN4 and NiN4 coordination bonds. The resultant Fe/Ni h-SA electrocatalyst exhibits an outstanding ORR activity, outperforming SA electrocatalysts with only Fe- or Ni-SAs, and the benchmark Pt/C. The obtained experimental results indicate that the achieved outstanding ORR performance results from the synergetic enhancement induced by the coexisting FeN4 and NiN4 sites, and the superior mass-transfer capability promoted by the trimodal-porous-structured carbon support.

14.
Phys Chem Chem Phys ; 22(35): 19718-19724, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32840552

RESUMEN

Halide perovskite solar cells have demonstrated high power conversion efficiency. Compositional engineering and surface passivation technologies have been drawing great attention to enhance their energy conversion efficiency and moisture resistance. In this study, the density functional theory method was employed to understand the effects of compositional engineering at the A site of perovskites and the 3-butenoic acid-based passivation layer on the structural, electronic and optical properties of halide perovskites. Our results suggest that the electronic and optical properties of CsPbI3 can be tuned by the mixing of caesium and FA cations. Moreover, the calculation of adsorption energies on mixed-cation Cs1-xFAxPbI3(001) surfaces reveals that the much stronger adsorption strength of 3-butenoic acid facilitates blocking of the interaction of surfaces with water molecules. Meanwhile, the calculated results indicate that adopting such an organic molecule as a passivation layer does not compromise their excellent electronic and optical properties. Our theoretical understanding of the A cation engineering and organic molecule-based surface passivation will be beneficial to the improvement of the overall performance of perovskite solar cells.

15.
Chempluschem ; 85(7): 1602-1611, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32729680

RESUMEN

An inorganic-salt-assisted synthesis of non-metallic heteroatom (phosphorus and sulfur) co-doped cobaltous oxide (P/S-CoO) has been reported. Potassium sulphate (K2 SO4 ) was used as inorganic source of sulfur (S), while triphenyl phosphine (PPh3 ) was used as phosphorus (P) source. A stepwise mechanistic investigation into the doping process revealed that the decomposition of PPh3 triggered the release of both the elemental sulfur and phosphorus because of the reducing reaction environment. The transformation of cobalt-PPh3 complex into cubic cobalt (II) oxide along with the successful co-doping (P and S) was achieved by high temperature calcination at 800 °C but preserved the bulk CoO crystalline structure. The as synthesized P/S-CoO demonstrated an unprecedented enhancement on the oxygen evolution activity compare to that of pristine CoO with the current density of 10 mA/cm2 at the overpotential of 293 mV in 1.0 M KOH electrolyte and profound stability at different current densities.

16.
Adv Mater ; 32(18): e1904870, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31573704

RESUMEN

The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.

17.
J Phys Chem Lett ; 10(21): 6955-6961, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31651179

RESUMEN

The exploration of low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for large-scale hydrogen fuel generation. The understanding of the electronic properties of electrocatalysts plays a key role in this exploration process. In this study, our first-principles results demonstrate that the catalytic performance of the 1D metal-organic frameworks (MOFs) can be significantly influenced by engineering the composite of the metal node. Using the Gibbs free energy of the adsorption of hydrogen atoms as a key descriptor, we found that Ni- and Cr-based dithiolene MOFs possess better hydrogen evolution performance, and the much different efficiencies can be ascribed to their electronic resonance structures [TM3+(L2-)(L2-)]- ↔ [TM2+(L•-)(L2-)]-. The [TM2+(L•-)(L2-)]- structure is preferred due to the higher activity of the catalytic site L with more radical features, and the stabilized [TM2+(L•-)(L2-)]- structure of the Cr- and Ni-based MOFs can be ascribed to the electronic configurations of their TM2+ cations with half-occupied and fully occupied valence orbitals. Our results therefore reveal a novel strategy for optimizing the electronic structures of materials on the basis of the resonant charge-transfer mechanism for their practical applications.

18.
J Colloid Interface Sci ; 557: 311-317, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525668

RESUMEN

Ultrafine WO3-x (0 < x < 1) nanowires with aspect ratio greater than 100 were successfully synthesized by two-phase strategy. The crystal structure, morphology evolution and thermal stability of the samples were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectrum (XPS), high resolution transmission electron microscopy (HRTEM), and thermal gravimetric analysis (TGA). The morphology of WO3-x nanowires is closely related to the pH value and oleamine content of the reaction system. By controlling the reaction conditions, a linear product with a diameter of less than 2 nm can be obtained, and the exposed active lattice plane is 110 crystal face. On this basis, the prepared ultrafine WO3-x nanowire sensor was tested for a series of harmful gases. The sensitivity of WO3-x-based gas sensors can reach 57.9 for 10 ppm NO2 at 100 °C, which is much higher than most reported values. The sensor has the excellent sensing performance of ppm NO2 at low operating temperature, which is due to its nanowire structure and oxygen vacancies. These results demonstrate that this type of sensor is a competitive candidate for NO2-sensing applications.

19.
Adv Mater ; 31(29): e1901570, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31155760

RESUMEN

The intracellular delivery and functionalization of genetic molecules play critical roles in gene-based theranostics. In particular, the delivery of plasmid DNA (pDNA) with safe nonviral vectors for efficient intracellular gene expression has received increasing attention; however, it still has some limitations. A facile one-pot method is employed to encapsulate pDNA into zeolitic imidazole framework-8 (ZIF-8) and ZIF-8-polymer vectors via biomimetic mineralization and coprecipitation. The pDNA molecules are found to be well distributed inside both nanostructures and benefit from their protection against enzymatic degradation. Moreover, through the use of a polyethyleneimine (PEI) 25 kD capping agent, the nanostructures exhibit enhanced loading capacity, better pH responsive release, and stronger binding affinity to pDNA. From in vitro experiments, the cellular uptake and endosomal escape of the protected pDNA are greatly improved with the superior ZIF-8-PEI 25 kD vector, leading to successful gene expression with high transfection efficacy, comparable to expensive commercial agents. New cost-effective avenues to develop metal-organic-framework-based nonviral vectors for efficient gene delivery and expression are provided.


Asunto(s)
ADN/química , ADN/genética , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Nanoestructuras/química , Plásmidos/genética , Transfección/métodos , Transporte Biológico , Cápsulas , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Endosomas/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Imidazoles/química , Células MCF-7 , Estructuras Metalorgánicas/metabolismo , Polietileneimina/química , Zeolitas/química
20.
Angew Chem Int Ed Engl ; 58(26): 8824-8828, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31050110

RESUMEN

The poor cycling stability resulting from the large volume expansion caused by lithiation is a critical issue for Si-based anodes. Herein, we report for the first time of a new yolk-shell structured high tap density composite made of a carbon-coated rigid SiO2 outer shell to confine multiple Si NPs (yolks) and carbon nanotubes (CNTs) with embedded Fe2 O3 nanoparticles (NPs). The high tap density achieved and superior conductivity can be attributed to the efficiently utilised inner void containing multiple Si yolks, Fe2 O3 NPs, and CNTs Li+ storage materials, and the bridged spaces between the inner Si yolks and outer shell through a conductive CNTs "highway". Half cells can achieve a high area capacity of 3.6 mAh cm-2 and 95 % reversible capacity retention after 450 cycles. The full cell constructed using a Li-rich Li2 V2 O5 cathode can achieve a high reversible capacity of 260 mAh g-1 after 300 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...