Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 856-61, 2015 Mar.
Artículo en Chino | MEDLINE | ID: mdl-26117911

RESUMEN

Through integrating multi-spectral sensor characteristics of ZY-3 satellite, a modified reflectance-based method is proposed and used to achieve ZY-3 satellite multispectral sensor in-flight radiometric calibration. This method chooses level 1A image as data source and establishes geometric model to get an accurate observation geometric parameters at calibration site according to the information provided in image auxiliary documentation, which can reduce the influences on the calibration accuracy from image resampling and observation geometry errors. We use two-point and multi-points methods to calculate the absolute radiometric calibration coefficients of ZY-3 satellite multispectral sensor based on the large campaign at Dongying city, Shan Dong province. Compared with ZY-3 official calibration coefficients, multi-points method has higher accuracy than two-point method. Through analyzing the dispersion between each calibration point and the fitting line, we find that the residual error of water calibration site is larger than others, which of green band is approximately 67.39%. Treating water calibration site as an error, we filter it out using 95.4% confidence level as standard and recalculate the calibration coefficients with multi-points method. The final calibration coefficients show that the relative differences of the first three bands are less than 2% and the last band is less than 5%, which manifests that the proposed radiometric calibration method can obtain accurate and reliable calibration coefficients and is useful for other similar satellites in future.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2203-7, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25474962

RESUMEN

The present paper performed the evaluation of four dark-object subtraction(DOS) atmospheric correction methods based on 2012 Inner Mongolia experimental data The authors analyzed the impacts of key parameters of four DOS methods when they were applied to ZY-3 CCD data The results showed that (1) All four DOS methods have significant atmospheric correction effect at band 1, 2 and 3. But as for band 4, the atmospheric correction effect of DOS4 is the best while DOS2 is the worst; both DOS1 and DOS3 has no obvious atmospheric correction effect. (2) The relative error (RE) of DOS1 atmospheric correction method is larger than 10% at four bands; The atmospheric correction effect of DOS2 works the best at band 1(AE (absolute error)=0.0019 and RE=4.32%) and the worst error appears at band 4(AE=0.0464 and RE=19.12%); The RE of DOS3 is about 10% for all bands. (3) The AE of atmospheric correction results for DOS4 method is less than 0. 02 and the RE is less than 10% for all bands. Therefore, the DOS4 method provides the best accuracy of atmospheric correction results for ZY-3 image.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA