Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38005891

RESUMEN

H7N9 avian influenza viruses have caused severe harm to the global aquaculture industry and human health. For further understanding of the characteristics of prevalence and hemagglutinin evolution of H7N9 avian influenza viruses, we generated the global epidemic map of H7N9 viruses from 2013 to 2022, constructed a phylogenetic tree, predicted the glycosylation sites and compared the selection pressure of the hemagglutinin. The results showed that although H7N9 avian influenza appeared sporadically in other regions worldwide, China had concentrated outbreaks from 2013 to 2017. The hemagglutinin genes were classified into six distinct lineages: A, B, C, D, E and F. After 2019, H7N9 viruses from the lineages B, E and F persisted, with the lineage B being the dominant. The hemagglutinin of highly pathogenic viruses in the B lineage has an additional predicted glycosylation site, which may account for their persistent pandemic, and is under more positive selection pressure. The most recent ancestor of the H7N9 avian influenza viruses originated in September 1991. The continuous evolution of hemagglutinin has led to an increase in virus pathogenicity in both poultry and humans, and sustained human-to-human transmission. This study provides a theoretical basis for better prediction and control of H7N9 avian influenza.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Hemaglutininas , Filogenia , Prevalencia , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Pandemias , China/epidemiología
2.
Cell Death Discov ; 7(1): 367, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819492

RESUMEN

The existence of the blood-tumor barrier (BTB) severely hinders the transport of anti-tumor drugs to brain tumor tissues. Selectively opening BTB is of great significance to improve the chemotherapy effect of glioma. Pseudogenes have been recognized as important regulators in various biologic processes. In this study, we identified that ribosomal protein L32 pseudogene 3 (RPL32P3) was highly expressed in glioma-exposed endothelial cells (GECs). Knockdown of RPL32P3 decreased the expression of tight junction-related proteins (TJPs) and increased BTB permeability. Subsequent analysis of the underlying mechanism indicated that RPL32P3 recruited lysine methyltransferase 2 A (KMT2A) to the Y-box binding protein 2 (YBX2) promoter region and mediated H3K4me3 to promote YBX2 transcription. Highly expressed YBX2 bound and stabilized hepatocyte nuclear factor 4 gamma (HNF4G) mRNA. Highly expressed HNF4G directly bound to the promoters of TJPs ZO-1, occludin and claudin-5 to promote their transcriptional activities and regulated BTB permeability. The simultaneous knockdown of RPL32P3, YBX2, and HNF4G combined with doxorubicin (DOX) increased the apoptosis of glioma cells. In conclusion, the current study indicated that RPL32P3 knockdown increased BTB permeability through the YBX2/HNF4G pathway. These findings may provide new targets for the comprehensive treatment of glioma.

3.
Cell Death Discov ; 7(1): 142, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127651

RESUMEN

The blood-brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer's disease (AD) development. ß-Amyloid (Aß) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aß1-42 microenvironment. BBB model treated with Aß1-42 for 48 h were used to simulate Aß-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aß1-42 microenvironment. In Aß1-42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3'UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aß1-42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aß1-42 microenvironment, which may provide a novel target for the therapy of AD.

4.
Cell Death Dis ; 12(2): 153, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542193

RESUMEN

Studies have found that RNA-binding proteins (RBPs) are dysfunctional and play a significant regulatory role in the development of glioma. Based on The Cancer Genome Atlas database and the previous studies, we selected heterogeneous nuclear ribonucleoprotein (HNRNPD) as the research candidate and sought its downstream targeted genes. In the present study, HNRNPD, linc00707, and specific protein 2 (SP2) were highly expressed, while zinc fingers and homeboxes 2 (ZHX2) and miR-651-3p were remarkedly downregulated in glioma tissues and cells. HNRNPD, linc00707, and SP2 knockdown or ZHX2 and miR-651-3p overexpression suppressed glioma cells proliferation, migration, and invasion and vasculogenic mimicry (VM) formation. Knockdown of HNRNPD increased the stability of ZHX2 mRNA. ZHX2 bound to the promoter region of linc00707 and negatively regulate its expression. Linc00707 could bind with miR-651-3p, while miR-651-3p bound to the 3' untranslated region (3'UTR) of SP2 mRNA to negatively regulate its expression. The transcription factor SP2 directly bound to the promoter regions of the VM formation-related proteins MMP2, MMP9, and VE-cadherin, playing a role in promoting transcription in order to regulate the VM formation ability of glioma cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Imitación Molecular , Neovascularización Patológica , ARN Largo no Codificante/metabolismo , Factor de Transcripción Sp2/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HEK293 , Ribonucleoproteína Nuclear Heterogénea D0/genética , Proteínas de Homeodominio/genética , Humanos , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , Transducción de Señal , Factor de Transcripción Sp2/genética , Factores de Transcripción/genética
5.
RNA Biol ; 17(9): 1293-1308, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32372707

RESUMEN

The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aß1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Microambiente Celular/genética , Regulación de la Expresión Génica , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Elk-4 del Dominio ets/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Fragmentos de Péptidos/metabolismo , Permeabilidad , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Estabilidad del ARN , ARN Largo no Codificante/genética , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA