Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563506

RESUMEN

Excessive exposure to manganese (Mn) through drinking water and food during pregnancy significantly heightens the likelihood of neurodevelopmental damage in offspring. Multiple studies have indicated that melatonin (Mel) may help to relieve neurodevelopmental disorders caused by Mn, but potential mechanisms underlying this effect require further exploration. Here, we utilized primary neural stem cells (NSCs) as a model to elucidate the molecular mechanism underlying the protective function of Mel on Mn-induced cell proliferation dysfunction and cycle arrest. Our results showed that Mn disrupted the cell cycle in NSCs by suppressing positive regulatory proteins (CDK2, Cyclin A, Cyclin D1, and E2F1) and enhancing negative ones (p27KIP1 and p57KIP2), leading to cell proliferation dysfunction. Mel inhibited the Mn-dependent changes to these proteins and the cell cycle through nuclear receptor-related protein 1 (Nurr1), thus alleviating the proliferation dysfunction. Knockdown of Nurr1 using lentivirus-expressed shRNA in NSCs resulted in a diminished protective effect of Mel. We concluded that Mel mitigated Mn-induced proliferation dysfunction and cycle arrest in NSCs through Nurr1.

2.
Front Microbiol ; 15: 1346340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596380

RESUMEN

Background: Polymyxin B (PMB) and polymyxin E (colistin, CST) are polymyxin antibiotics, which are considered last-line therapeutic options against multidrug-resistant Gram-negative bacteria in serious infections. However, there is increasing risk of resistance to antimicrobial drugs. Effective efflux pump inhibitors (EPIs) should be developed to help combat efflux pump-mediated antibiotic resistance. Methods: Chryseobacterium sp. PL22-22A was isolated from aquaculture sewage under selection with 8 mg/L PMB, and then its genome was sequenced using Oxford Nanopore and BGISEQ-500 platforms. Cpr (Chryseobacterium Polymyxins Resistance) genes encoding a major facilitator superfamily-type tripartite efflux system, were found in the genome. These genes, and the gene encoding a truncation mutant of CprB from which sequence called CprBc was deleted, were amplified and expressed/co-expressed in Escherichia coli DH5α. Minimum inhibitory concentrations (MICs) of polymyxins toward the various E. coli heterologous expression strains were tested in the presence of 2-128 mg/L PMB or CST. The pumping activity of CprABC was assessed via structural modeling using Discovery Studio 2.0 software. Moreover, the influence on MICs of baicalin, a novel MFS EPI, was determined, and the effect was analyzed based on homology modeling. Results: Multidrug-resistant bacterial strain Chryseobacterium sp. PL22-22A was isolated in this work; it has notable resistance to polymyxin, with MICs for PMB and CST of 96 and 128 mg/L, respectively. A novel MFS-type tripartite efflux system, named CprABC, was identified in the genome of Chryseobacterium sp. PL22-22A. Heterologous expression and EPI assays indicated that the CprABC system is responsible for the polymyxin resistance of Chryseobacterium sp. PL22-22A. Structural modeling suggested that this efflux system provides a continuous conduit that runs from the CprB funnel through the CprC porin domain to pump polymyxins out of the cell. A specific C-terminal α-helix, CprBc, has an activation function on polymyxin excretion by CprB. The flavonoid compound baicalin was found to affect the allostery of CprB and/or obstruct the substrate conduit, and thus to inhibit extracellular polymyxin transport by CprABC. Conclusion: Novel MFS-type tripartite efflux system CprABC in Chryseobacterium sp. PL22-22A mediates resistance to polymyxins, and baicalin is a promising EPI.

3.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36772957

RESUMEN

Covalent modifications of chromatin regulate genomic structure and accessibility in diverse biological processes such as transcriptional regulation, cell cycle progression, and DNA damage repair. Many histone modifications have been characterized, yet understanding the interactions between these and their combinatorial effects remains an active area of investigation, including dissecting functional interactions between enzymes mediating these modifications. In budding yeast, the histone acetyltransferase Gcn5 interacts with Rts1, a regulatory subunit of protein phosphatase 2A (PP2A). Implicated in the interaction is the potential for the dynamic phosphorylation of conserved residues on histone H2B and the Cse4 centromere-specific histone H3 variant. To probe these dynamics, we sought to identify kinases which contribute to the phosphorylated state. In a directed screen beginning with in silico analysis of the 127 members of yeast kinome, we have now identified 16 kinases with genetic interactions with GCN5 and specifically found distinct roles for the Hog1 stress-activated protein kinase. Deletion of HOG1 (hog1Δ) rescues gcn5Δ sensitivity to the microtubule poison nocodazole and the lethality of the gcn5Δ rts1Δ double mutant. The Hog1-Gcn5 interaction requires the conserved H2B-T91 residue, which is phosphorylated in vertebrate species. Furthermore, deletion of HOG1 decreases aneuploidy and apoptotic populations in gcn5Δ cells. Together, these results introduce Hog1 as a kinase that functionally opposes Gcn5 and Rts1 in the context of the spindle assembly checkpoint and suggest further kinases may also influence GCN5's functions.


Asunto(s)
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Cromosomas/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferasas/metabolismo , Puntos de Control del Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética
4.
Biomed Opt Express ; 13(5): 2754-2771, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774327

RESUMEN

We report on a multimodal multiphoton microscopy (MPM) system with depth scanning. The multimodal capability is realized by an Er-doped femtosecond fiber laser with dual output wavelengths of 1580 nm and 790 nm that are responsible for three-photon and two-photon excitation, respectively. A shape-memory-alloy (SMA) actuated miniaturized objective enables the depth scanning capability. Image stacks combined with two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and third harmonic generation (THG) signals have been acquired from animal, fungus, and plant tissue samples with a maximum depth range over 200 µm.

5.
Biomed Opt Express ; 12(8): 5073-5088, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513243

RESUMEN

The depolarization property of skin has been found to be important for skin cancer detection. Previous techniques based on light polarization lack the capability of depth differentiation. Polarization-sensitive optical coherence tomography (PS-OCT) has the advantage of both depth-resolved 3D imaging and high sensitivity to polarization. In this study, we investigate the depolarization property of skin tissue using PS-OCT, especially with the degree of polarization uniformity (DOPU) contrast. Well designed skin phantoms with various surface roughness levels and optical properties mimicking skin are imaged by PS-OCT and the DOPU values are quantified. The result shows a correlation between DOPU and surface roughness, where a higher roughness corresponds to a lower DOPU value. An index matching experiment with a water layer confirms the impact of surface condition on light depolarization. Refraction of backscattered photons on the surface boundary is attributed to the broadening of backscattering angle and thus depolarization. To the best of our knowledge, this is the first time the impact of surface roughness on DOPU is reported and its mechanism explained. Furthermore, through preliminary in vivo skin imaging, the capability of DOPU in detecting depolarization in skin is demonstrated. By utilizing the 3D imaging from PS-OCT, DOPU can offer a high-resolution depth differentiation and quantification of depolarization in skin tissue.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(2): 145-152, 2021 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-33825372

RESUMEN

Coagulometer, known as blood coagulation analyzer, is a product that can provide accurate test results for medical diagnosis and treatment analysis by detecting a series of items closely related to thrombosis and hemostasis in coagulation reaction. On the basis of previous traditional methods, and with our deep understanding about the principles of hemagglutination detection, we propose a hemagglutination detection method by using the dual-magnetic circuit beads method. Then, the corresponding hemagglutination detection module is designed. The coagulation time of plasma can be measured by detecting the movement of the magnetic beads when the magnetic field intensity is appropriate. The activated partial thromboplastin time(APTT) of plasma is tested when the most suitable magnetic field intensity is found. The results preliminarily show that this blood coagulation test method is valid and the corresponding test module has a potential value in business.


Asunto(s)
Coagulación Sanguínea , Magnetismo , Pruebas de Coagulación Sanguínea , Fenómenos Magnéticos , Tiempo de Tromboplastina Parcial
7.
IEEE Trans Cybern ; 51(9): 4429-4438, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33055056

RESUMEN

Due to the complementarity of the process planning and shop scheduling, their integration can greatly facilitate the development of the intelligent manufacturing system. In the last decade, the integrated process planning and scheduling (IPPS) problem has become a research hotspot in the manufacturing system area. It is an NP-hard problem and is more complicated than the job shop scheduling problem. Although some progress has been obtained in the IPPS field, there are still many unsolved open problems. In this article, the novel integrated encoding and decoding methods are proposed by considering the OR-node of the process network graph. Moreover, a modified genetic algorithm (MGA) is designed based on the proposed coding methods. The process planning and the scheduling parts can be represented simultaneously in one individual. As for the precedence constraints between operations, the specifically designed operators are able to guarantee the feasibility of the operation sequence during the searching procedure. Then, the superiority of MGA is verified by updating nine new records on 37 well-known open problems, four of them reach their lower bounds. In addition, the proposed algorithm is also tested on a real-world case from a nonstandard equipment workshop in a Chinese machine tool company, which produces a common module of a packaging machine. The results show that the proposed MGA can solve the real-world case better than the comparative algorithms.

8.
Biomed Opt Express ; 11(5): 2745-2760, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499957

RESUMEN

Detecting articular cartilage (AC) degeneration in its early stage plays a critical role in the diagnosis and treatment of osteoarthritis (OA). Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to the alteration and disruption of collagen organization that happens during OA progression. This study proposes an effective OA evaluating method based on PS-OCT imaging. A slope-based analysis is applied on the phase retardation images to segment articular cartilage into three zones along the depth direction. The boundaries and birefringence coefficients (BRCs) of each zone are quantified. Two parameters, namely phase homogeneity index (PHI) and zonal distinguishability (Dz), are further developed to quantify the fluctuation within each zone and the zone-to-zone variation of the tissue birefringence properties. The PS-OCT based evaluating method then combines PHI and Dz to provide a G PS score for the severity of OA. The proposed method is applied to human hip joint samples and the results are compared with the grading by histology images. The G PS score shows very strong statistical significance in differentiating different stages of OA. Compared to using the BRC of each zone or a single BRC for the entire depth, the G PS score shows great improvement in differentiating early-stage OA. The proposed method is shown to have great potential to be developed as a clinical tool for detecting OA.

9.
Biomed Opt Express ; 11(2): 624-635, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133217

RESUMEN

A multimodal multiphoton microscopy (MPM) is developed to acquire both two-photon microscopy (2PM) and three-photon microscopy (3PM) signals. A dual-wavelength Er-doped fiber laser is used as the light source, which provides the fundamental pulse at 1580 nm to excite third harmonic generation (THG) and the frequency-doubled pulse at 790 nm to excite intrinsic two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG). Due to their different contrast mechanisms, the TPEF, SHG, and THG images can acquire complementary information about tissues, including cells, collagen fibers, lipids, and interfaces, all label-free. The compact MPM imaging probe is developed using miniature objective lens and a micro-electro-mechanical scanner. Furthermore, the femtosecond laser pulses are delivered by a single mode fiber and the signals are collected by a multimode fiber, which makes the miniaturized MPM directly fiber-coupled, compact, and portable. Design considerations on using the dual excitation wavelengths are discussed. Multimodal and label-free imaging by TPEF, SHG, and THG are demonstrated on biological samples. The miniaturized multimodal MPM is shown to have great potential for label-free imaging of thick and live tissues.

10.
Org Lett ; 20(5): 1404-1408, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29470091

RESUMEN

The first regiospecific catalytic intermolecular assembly of 2,2-disubstituted indolines has been developed. This protocol is based on a ligand and directing group free, iron-catalyzed radical [3 + 2] process, allowing efficient coupling of different N-sulfonylanilines with various α-substituted styrenes. Preliminary mechanistic studies elucidated the radical mechanism involving a reactive and versatile anilino radical and the importance of iron complex as a Lewis acid, rendering both the reactivity and regiospecificity of this transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...