Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 165: 115204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499456

RESUMEN

AIMS: The manipulation of macrophage recruitment and their shift in the M1/M2 ratio is a promising approach to mitigate osteoarthritis (OA). Nevertheless, the current clinical medication available for OA is only palliative and may result in undesirable outcomes. Hence, it is urgent to explore alternative disease-modifying drug supplement that are both safer and more effective in OA treatment, like probiotic and probiotic-derived membrane vesicles. METHODS: The synovial inflammation and cartilage damage in collagenase-induced OA (CIOA) mice were observed using haematoxylin and eosin, saffron O-solid green and immunohistochemical staining. Bipedal balance test and open field test were conducted to determine the effectiveness of L. johnsonii-derived membrane vesicles (LJ-MVs) in reducing joint pain of CIOA mice. Additionally, Transwell, western blot, and immunological testing were used to examine the effect of LJ-MVs on macrophage migration and reprogramming. Furthermore, a 4D label-free proteomic analysis of LJ-MVs and their parent bacterium was performed, and the glutamine synthetase (GS)/mTORC1 axis in macrophage was verified by western blot. RESULTS: L. johnsonii and its membrane vesicles, LJ-MVs, exhibit a novel ability to mitigate inflammation, cartilage damage, and pain associated with OA. This is achieved by their ability to impede macrophage migration, M1-like polarization, and inflammatory mediators secretion, while simultaneously promoting the M2/M1 ratio in synovial macrophages. The mechanism underlying this effect involves the modulation of macrophage GS/mTORC1 pathway, at least partially. SIGNIFICANCE: Owing to their probiotic derivation, LJ-MVs will be a more dependable and potent disease-modifying drugs for the prevention and therapy of OA in the long run.


Asunto(s)
Lactobacillus johnsonii , Osteoartritis , Ratones , Animales , Glutamato-Amoníaco Ligasa/metabolismo , Membrana Sinovial/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteómica , Osteoartritis/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo
2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-37259393

RESUMEN

In a preliminary study, we synthesized a series of new PDK1/MEK dual inhibitors. Antitumor activity screening showed that Compound YZT exerts a strong inhibitory action in A549 cells. However, the specific mechanism of YZT against non-small cell lung cancer (NSCLC) is largely unknown. This work confirmed the anti-proliferation and pro-apoptosis effects of YZT in NSCLC cells. Furthermore, YZT promotes autophagy and provokes complete autophagic flux in NSCLC cells. Notably, compared with YZT alone, the combination of YZT with the autophagy inhibitor chloroquine (CQ) or 3-methyladenine (3-MA) markedly strengthened the anti-proliferative and pro-apoptotic actions, suggesting that YZT-induced autophagy is cytoprotective. We further found that YZT-induced autophagy may exert a cytoprotective function by preserving the integrity of mitochondria and decreasing mitochondrial apoptosis. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that PDK1 is an upstream protein of the Akt/mTOR axis and western blotting verified that YZT induces autophagy by the PDK1/Akt/mTOR signaling axis. Finally, YZT plus CQ significantly enhanced the anticancer activities compared to YZT alone in an animal study and immunohistochemistry showed that the level of LC3 was increased by YZT, which is in line with the in vitro results. In short, our study provides reliable experimental basis for developing Compound YZT as a new chemotherapeutic drug candidate and suggests that combined administration of YZT with CQ is a potential therapy against NSCLC.

3.
Curr Stem Cell Res Ther ; 18(1): 115-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35473519

RESUMEN

BACKGROUND: Promoting bone marrow mesenchymal stem cell (BMSC) osteoblastic differentiation is a promising therapeutic strategy for osteoporosis (OP). The present study demonstrates that miR- 483-5p inhibits the osteogenic differentiation of BMSCs. Therefore, selectively delivering the nanoparticles carrying antagomir-483-5p (miR-483-5p inhibitor) to BMSCs is expected to become an effective treatment drug for OP. METHODS: Real-time PCR assays were used to analyze miR-483-5p, ALP and Bglap levels in BMSCs of ovariectomized and aged osteoporotic mice. Immunoglobulin G and poloxamer-188 encapsulated the functional small molecules, and a BMSC-targeting aptamer was employed to confirm the direction of the nanoparticles to selectively and efficiently deliver antagomir-483-5p to BMSCs in vivo. Luciferase assays were used to determine the target genes of miR-483-5p. Western blot assays and immunohistochemistry staining were used to detect the targets in vitro and in vivo. RESULTS: miR-483-5p levels were increased in BMSCs of ovariectomized and aged osteoporotic mice. Inhibiting miR-483-5p levels in BMSCs by antagomir-483-5p in vitro promoted the expression of bone formation markers, such as ALP and Bglap. The FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p were taken up by BMSCs, resulting in stimulation of BMSC osteoblastic differentiation in vitro and osteoporosis prevention in vivo. Furthermore, our research demonstrated that mitogen-activated protein kinase 1 (MAPK1) and SMAD family member 5 (Smad5) were direct targets of miR-483-5p in regulating BMSC osteoblastic differentiation and osteoporosis pathological processes. CONCLUSIONS: The important therapeutic role of FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p in osteoporosis was established in our study. These nanoparticles are a novel candidate for the clinical prevention and treatment of osteoporosis. The optimized, targeted drug delivery platform for small molecules will provide new ideas for treating clinical diseases.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Nanopartículas , Osteoporosis , Animales , Ratones , Antagomirs , Osteogénesis , MicroARNs/genética , Osteoporosis/tratamiento farmacológico
4.
Int Immunopharmacol ; 111: 109135, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35987145

RESUMEN

Relatively low-grade inflammatory of osteoarthritic joints is characterized by synovitis and a catabolic and proinflammatory state of the chondrocytes and plays an important role in osteoarthritis (OA) initiation and exacerbation. Our previous research showed cardiac glycoside compounds might be effective in OA synovitis. However, the effect of digoxin (DIG), an FDA-approved cardenolide, on inflammation inhibition of osteoarthritic joints has not been investigated. In the present study, a western blot analysis and immunofluorescence staining revealed that DIG alleviated OA synovitis by inhibiting the M1-like polarization of synovial macrophages in OA patients and collagenase-induced OA (CIOA, with considerable synovitis) mice. Subsequently, the exosomes produced by macrophages and M1-like macrophages treated with or without DIG were isolated and identified. According to miRNA sequencing analysis of these exosomes and subsequent target activity assays, we confirmed DIG controls OA inflammatory microenvironment and promotes chondrogenesis by, at least partly, downregulating the M1-like macrophage-derived exosomal miR-146b-5p/Usp3&Sox5 axis in vitro and in vivo. This research provides reliable experimental evidence supporting the clinical application of DIG as a disease-modifying drug for inflammation-associated OA. Additionally, the spectrum of diseases of inflammation controlled by DIG has been broadened, which prompting research interest in the new function of an "old" FDA-approved drug.


Asunto(s)
MicroARNs , Osteoartritis , Sinovitis , Animales , Digoxina/farmacología , Digoxina/uso terapéutico , Inflamación/metabolismo , Macrófagos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/metabolismo
5.
Front Pharmacol ; 13: 905082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034873

RESUMEN

Posaconazole (POS) has been reported to present potential antitumor activity for glioblastoma (GBM). However, its molecular mechanisms remain unclear. In this study, we found that POS has potent cytotoxicity and inhibits cell viability and proliferation in GBM. In addition, we adopted a sphere formation assay to detect the self-renewal capacity, performed western blotting to measure cancer stem-like cells (CSCs) marker proteins (CD133, SOX2, Nanog and Oct4) and applied flow cytometry to monitor the subpopulation of CD144+/CD33+ cells, and the results all demonstrated that POS can remarkably weaken CSCs stemness. Furthermore, western blotting, immunoflurescence, transmission electron microscopy and acridine orange staining were performed to detect autophagy-related proteins (LC3, SQSTM1, Beclin 1 and Atg5), count the numbers of endogenous LC3 puncta, visually observe the ultrastructural morphology of autophagosomes and judge the formation of acidic vesicular organelles, respectively, and the results validated that POS promotes autophagy induction. Importantly, the suppressive effect of POS on CSCs stemness was partially relieved when autophagy was blocked by the autophagy inhibitor chloroquine (CQ) or Atg5 shRNA. Bioinformatic techniques, including weighted gene coexpression network analysis (WGCNA), gene set difference analysis (GSVA) and KEGG pathway analysis, combined with experimental validations showed that survivin, which is implicated in both autophagy and the stem cell index, is one of the target proteins of POS and that POS weakens CSCs stemness via suppressing the Wnt/ß-catenin signaling pathway in GBM. Besides, POS-induced autophagy and the Wnt/ß-catenin signaling pathway are negative regulators for each other. Finally, the antitumor activity of POS was confirmed in GBM xenograft models in vivo. Consistent with the in vitro conclusions, POS upregulated the expression of LC3 and decreased the expression of CD133, survivin and ß-catenin, as shown by the immunohistochemistry analysis. In summary, this work provides an experimental foundation for exploiting POS as a CSCs-targeting antitumor drug for GBM treatment.

6.
Pharmgenomics Pers Med ; 14: 745-755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34188521

RESUMEN

OBJECTIVE: Individual differences in glycemic response to metformin in antidiabetic treatment exist widely. Although some associated genetic variations have been discovered, they still cannot accurately predict metformin response. In the current study, we set out to investigate novel genetic variants affecting metformin response in Chinese type 2 diabetes (T2D) patients. METHODS: A two-stage study enrolled 500 T2D patients who received metformin, glibenclamide or a combination of both were recruited from 2009 to 2012 in China. Change of HbA1c, adjusted by clinical covariates, was used to evaluate glycemic response to metformin. Selected single nucleotide polymorphisms (SNPs) were genotyped using the Infinium iSelect and/or Illumina GoldenGate genotyping platform. A linear regression model was used to evaluate the association between SNPs and response. RESULTS: A total of 3739 SNPs were screened in Stage 1, of which 50 were associated with drug response. Except for one genetic variant preferred to affect glibenclamide, the remaining SNPs were subsequently verified in Stage 2, and two SNPs were successfully validated. These were PRKAG2 rs2727528 (discovery group: ß=-0.212, P=0.046; validation group: ß=-0.269, P=0.028) and PRKAG2 rs1105842 (discovery group: ß=0.205, P=0.048; validation group: ß=0.273, P=0.025). C allele carriers of rs2727528 and C allele carriers of rs1105842 would have a larger difference of HbA1c level when using metformin. CONCLUSION: Two variants rs2727528 and rs1105842 in PRKAG2, encoding γ2 subunit of AMP-activated protein kinase (AMPK), were found to be associated with metformin response in Chinese T2D patients. These findings may provide some novel information for personalized pharmacotherapy of metformin in China.

7.
PeerJ ; 9: e11041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777530

RESUMEN

Galangin has multiple pharmacological efficacies, such as anti-cancer, anti-inflammation and anti-oxidation. Galangin can be rapidly converted into glucuronidated metabolites in vivo. This study aimed to establish an UFLC-MS/MS analytical method to simultaneously determine the concentrations of two glucuronidated metabolites of galangin, galangin-3-O-ß-D-glucuronic acid (GG-1) and galangin-7-O-ß-D-glucuronic acid (GG-2) in rat plasma. After oral administration of galangal extract (0.3 g/kg), blood samples were collected from the orbital sinus, then treated by methanol precipitation and further gradient-eluted with Phenomenex Kinetex 2.6 µm XB-C18 column. The mass spectrometer was manipulated in the negative electrospray ionization (ESI) and selected multiple reaction monitoring (MRM) mode for the analytes. The precursor-to-product ion pairs applied for GG-1, GG-2 and chrysin (as the internal standard, IS) were m/z 445.2→269.0, 445.2→268.9 and 253.0→142.9, respectively. The results showed that the linear ranges for both GG-1 and GG-2 were 2.0-2000.0 ng/mL (r 2 > 0.995). The inter- and intra-day precision were 89.3%-109.2%, RSD was less than 15%, and the repeatability was good. The recoveries of both metabolites and IS were over 89%, and matrix effect was within 15%. The validated analytical method was further applied to study the pharmacokinetic profiles of GG-1 and GG-2 in vivo. The pharmacokinetic parameters suggested that Tmax of GG-1 was equivalent to that of GG-2, and MRT0-t, t 1/2 of GG-2 were a little higher than those of GG-1. Importantly, AUC0-t and Cmax of GG-2 were almost twice as those of GG-1. In short, the validated UFLCMS/MS analytical method was feasible to simultaneously determine two galangin metabolites GG-1 and GG-2 in rat plasma and further analyze in vivo metabolism of galangin.

8.
PeerJ ; 8: e9981, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072436

RESUMEN

BACKGROUND: A novel dual MEK/PDK1 inhibitor named 9za has been synthesized by our research team. Preliminary study showed that 9za possessed potent cytotoxicity and proapoptosis in non-small cell lung cancer (NSCLC) cells. Nevertheless, the precise underlying mechanism is vague. METHODS: In this work, we adopted the MTT assay, the Cell Cycle Detection Kit, and the JC-1 staining assay to detect the cell viability, the cell cycle distribution and the mitochondrial membrane potential (MMP), respectively. Cell apoptosis was measured by the morphology observation under a light microscope, Annexin V-FITC/propidium iodide (PI) apoptosis detection and the colorimetric TUNEL assay. Western blot was used to monitor the cell cycle-, apoptosis-related proteins and relevant proteins involved in the signaling pathways. RESULTS: The MTT assay demonstrated that 9za sharply decreased the viability of NSCLC cells. Cell cycle analysis revealed that low concentrations of 9za arrested the cell cycle at the G0/G1 phase , which was further confirmed by the decreased levels of Cyclin D1, cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6). Additionally, morphological observations, Annexin V-FITC/propidium iodide (PI) apoptosis analysis and TUNEL assays indicated that high concentrations of 9za induced cell apoptosis. Furthermore, the JC-1 staining assay revealed that the mitochondrial membrane potential was downregulated following 9za exposure. Western blot also showed that 9za markedly decreased the expression levels of total Bcl-2, Cytochrome C in the mitochondria and BCL2 associated X (BAX) in the cytoplasm. However, the levels of BAX in the mitochondria, Cytochrome C in the cytoplasm, active caspase-9, active caspase-3 and cleaved-PARP showed the opposite changes. Moreover, the dose-dependent decreased phosphorylation levels of PDK1, protein kinase B (Akt), MEK and extracellular signal regulated kinase 1/2 (ERK1/2) after 9za treatment verified that 9za was indeed a dual MEK/PDK1 inhibitor, as we expected. Compared with a single MEK inhibitor PD0325901 or a single PDK1 inhibitor BX517, the dual MEK/PDK1 inhibitor 9za could strengthen the cytotoxic and proapoptotic effect, indicating that the double blocking of the MEK and PDK1 signaling pathways plays stronger cell growth inhibition and apoptosis induction roles than the single blocking of the MEK or PDK1 signaling pathway in NSCLC cells. Our work elucidated the molecular mechanisms for 9za as a novel drug candidate against NSCLC.

9.
PeerJ ; 8: e9422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742772

RESUMEN

Bladder cancer (BC) is the ninth most common malignancy worldwide. Bladder urothelial carcinoma (BLCA) constitutes more than 90% of bladder cancer (BC). The five-year survival rate is 5-70%, and patients with BLCA have a poor clinical outcome. The identification of novel clinical molecular markers in BLCA is still urgent to allow for predicting clinical outcomes. This study aimed to identify a novel signature integrating the three-dimension transcriptome of protein coding genes, long non-coding RNAs, microRNAs that is related to the overall survival of patients with BLCA, contributing to earlier prediction and effective treatment selection, as well as to the verification of the established model in the subtypes identified. Gene expression profiling and the clinical information of 400 patients diagnosed with BLCA were retrieved from The Cancer Genome Atlas (TCGA) database. A univariate Cox regression analysis, robust likelihood-based survival modelling analysis and random forests for survival regression and classification algorithms were used to identify the critical biomarkers. A multivariate Cox regression analysis was utilized to construct a risk score formula with a maximum area under the curve (AUC = 0.7669 in the training set). The significant signature could classify patients into high-risk and low-risk groups with significant differences in overall survival time. Similar results were confirmed in the test set (AUC = 0.645) and in the entire set (AUC = 0.710). The multivariate Cox regression analysis indicated that the five-RNA signature was an independent predictive factor for patients with BLCA. Non-negative matrix factorization and a similarity network fusion algorithm were applied for identifying three molecular subtypes. The signature could separate patients in every subtype into high- and low- groups with a distinct difference. Gene set variation analysis of protein-coding genes associated with the five prognostic RNAs demonstrated that the co-expressed protein-coding genes were involved in the pathways and biological process of tumourigenesis. The five-RNA signature could serve as to some degree a reliable independent signature for predicting outcome in patients with BLCA.

10.
PeerJ ; 8: e8504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095347

RESUMEN

BACKGROUND: Gastric carcinoma is a very diverse disease. The progression of gastric carcinoma is influenced by complicated gene networks. This study aims to investigate the actual and potential prognostic biomarkers related to survival in gastric carcinoma patients to further our understanding of tumor biology. METHODS: A weighted gene co-expression network analysis was performed with a transcriptome dataset to identify networks and hub genes relevant to gastric carcinoma prognosis. Data was obtained from 300 primary gastric carcinomas (GSE62254). A validation dataset (GSE34942 and GSE15459) and TCGA dataset confirmed the results. Gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA) were performed to identify the clusters responsible for the biological processes and pathways of this disease. RESULTS: A brown transcriptional module enriched in the organizational process of the extracellular matrix was significantly correlated with overall survival (HR = 1.586, p = 0.005, 95% CI [1.149-2.189]) and disease-free survival (HR = 1.544, p = 0.008, 95% CI [1.119-2.131]). These observations were confirmed in the validation dataset (HR = 1.664, p = 0.006, 95% CI [1.155-2.398] in overall survival). Ten hub genes were identified and confirmed in the validation dataset from this brown module; five key biomarkers (COL8A1, FRMD6, TIMP2, CNRIP1 and GPR124 (ADGRA2)) were identified for further research in microsatellite instability (MSI) and epithelial-tomesenchymal transition (MSS/EMT) gastric carcinoma molecular subtypes. A high expression of these genes indicated a poor prognosis. CONCLUSION: A transcriptional co-expression network-based approach was used to identify prognostic biomarkers in gastric carcinoma. This method may have potential for use in personalized therapies, however, large-scale randomized controlled clinical trials and replication experiments are needed before these key biomarkers can be applied clinically.

11.
J Cell Physiol ; 234(11): 20728-20741, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31004362

RESUMEN

Non-small-cell lung cancer (NSCLC) is an aggressive subtype of pulmonary carcinomas with high mortality. However, chemotherapy drug resistance and high recurrence rates hinder the curative effect of platinum-based first-line chemotherapy, which makes it urgent to develop new antitumor drugs for NSCLC. 9za, a new candidate drug synthesized by our research group, has been verified with potent antilung cancer activity in preliminary experiments. However, the underlying molecular mechanism of 9za remains largely vague. This work revealed that 9za could play important cytotoxic and proapoptotic roles in NSCLC cells. Moreover, 9za could induce autophagy and promote autophagy flux. Interestingly, the cytotoxic and proapoptotic roles were significantly dependent on 9za-induced cytoprotective autophagy. That is, the coadministration of 9za with an autophagy inhibitor such as chloroquine or 3-methyladenine exhibited increased cytotoxic and proapoptotic effects compared with 9za treatment alone. In addition, 9za exposure suppressed the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), protein kinase B (Akt), mammalian targets of rapamycin (mTOR), p70 S6 kinase, and 4E binding protein 1 by a dose-dependent way, manifesting that the Akt/mTOR axis was implicated in 9za-induced autophagy. In addition, the overexpression of PDK1 resulted in increased phosphorylation of PDK1 and Akt and blocking of 9za-mediated autophagy. These data showed that the PDK1/Akt/mTOR pathway was involved in 9za-induced autophagy. Hence, this work provides a theoretical basis for exploiting 9za as a new antilung cancer candidate drug and hints that the combination of 9za with an autophagy inhibitor is a feasible alternative approach for the therapy of NSCLC.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Benzodioxoles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Indoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Compuestos de Anilina/química , Compuestos de Anilina/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Benzodioxoles/química , Benzodioxoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/química , Indoles/uso terapéutico , Estructura Molecular , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
12.
Bioorg Med Chem ; 27(9): 1871-1881, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30926312

RESUMEN

Bromodomain-containing protein 4 (BRD4), consisting of two tandem bromodomains (BD1 and BD2), is key epigenetic regulator in fibrosis and cancer, which has been reported that BD1 and BD2 have distinct roles in post-translational modification. But there are few selective inhibitors toward those two domains. Herein, this study designed and synthesized a series of novel selective BRD4-BD1 inhibitors, using computer-aided drug design (CADD) approach focused on exploring the difference of the binding pockets of BD1 and BD2, and finding the His437 a crucial way to achieve BRD4-BD1 selectivity. Our results revealed that the compound 3u is a potent selective BRD4-BD1 inhibitor with IC50 values of 0.56 µM for BD1 but >100 µM for BD2. The compound exhibited a broad spectrum of anti-proliferative activity against several human cancer and fibroblastic cell lines, which might be related to its capability of reducing the expression of c-Myc and collagen I. Furthermore, it could induce apoptosis in A375 cells. To the contrary, the selective BD2 inhibitor, RVX-208, did not indicate any of these activities. Our findings highlight that the function of BRD4-BD1 might be predominant in fibrosis and cancer. And it is rational to further develop novel selective BRD4-BD1 inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Diseño de Fármacos , Factores de Transcripción/antagonistas & inhibidores , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Diseño Asistido por Computadora , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Enlace de Hidrógeno , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
13.
Bioorg Med Chem ; 27(6): 944-954, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30777660

RESUMEN

The dysfunction and mutual compensatory activation of RAF-MEK-ERK and PI3K-PDK1-AKT pathways have been demonstrated as the hallmarks in several primary and recurrent cancers. The strategy of concurrent blocking of these two pathways shows clinical merits on effective cancer therapy, such as combinatory treatments and dual-pathway inhibitors. Herein, we report a novel prototype of dual-pathway inhibitors by means of merging the core structural scaffolds of a MEK1 inhibitor and a PDK1 inhibitor. A library of 43 compounds that categorized into three series (Series I-III) was synthesized and tested for antitumor activity in lung cancer cells. The results from structure-activity relationship (SAR) analysis showed the following order of antitumor activity that 3-hydroxy-5-(phenylamino) indolone (Series III) > 3-alkenyl-5-(phenylamino) indolone (Series I) > 3-alkyl-5-(phenylamino) indolone (Series II). A lead compound 9za in Series III showed most potent antitumor activity with IC50 value of 1.8 ±â€¯0.8 µM in A549 cells. Moreover, antitumor mechanism study demonstrated that 9za exerted significant apoptotic effect, and cellular signal pathway analysis revealed the potent blockage of phosphorylation levels of ERK and AKT in RAF-MEK-ERK and PI3K-PDK1-AKT pathways, respectively. The results reported here provide robust experimental basis for the discovery and optimization of dual pathway agents for anti-lung cancer therapy.


Asunto(s)
Indoles/química , Indoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Células A549 , Aminación , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzodioxoles/síntesis química , Benzodioxoles/química , Benzodioxoles/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Indoles/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Quinasas raf/metabolismo
14.
Int J Endocrinol ; 2016: 4350712, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977146

RESUMEN

Background. We aimed to investigate the distributive characteristics of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms and their influence on metformin efficacy in Chinese T2DM patients. Methods. The distributions of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms were determined in 267 T2DM patients and 182 healthy subjects. Subsequently, 53 newly diagnosed patients who received metformin monotherapy were recruited to evaluate metformin efficacy. Results. No significant difference was found between T2DM patients and healthy subjects in SLC22A1 rs594709 and SLC47A1 rs2289669 allele frequencies and genotype frequencies. After metformin treatment, SLC22A1 rs594709 GG genotype patients showed a higher increase in FINS (p = 0.015) and decrease in HOMA-IS (p = 0.001) and QUICKI (p = 0.002) than A allele carriers. SLC47A1 rs2289669 GG genotype patients had a higher decrease in TChol (p = 0.030) and LDL-C (p = 0.049) than A allele carriers. Among SLC22A1 rs594709 AA genotype, patients with SLC47A1 rs2289669 AA genotype showed a higher decrease in FBG (p = 0.015), PINS (p = 0.041), and HOMA-IR (p = 0.014) than G allele carriers. However, among SLC22A1 rs594709 G allele carriers, SLC47A1 rs2289669 AA genotype patients showed a higher decrease in TChol (p = 0.013) than G allele carriers. Conclusion. Our data suggest that SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms may influence metformin efficacy together in Chinese T2DM patients.

15.
Pharmacogenomics ; 16(14): 1621-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26401715

RESUMEN

AIM: To investigate the potential genetic effect on metformin efficacy in overweight or obese Chinese Type 2 diabetes mellitus (T2DM) patients. PATIENTS & METHODS: 768 SNPs in or close to 207 genes were genotyped in 84 patients treated with metformin + glibenclamide/Xiaoke Pill. Significant SNPs were then verified in 107 recent-onset overweight or obese T2DM patients treated with metformin alone. Genotyping was done by Illumina GoldenGate Assay. RESULTS: In the discovery stage, 22 SNPs were nominally significant. IL1B rs1143623 (p = 0.011) and EEF1A1P11-RPL7P9 rs10783050 (p = 0.021) were still significantly associated with the relative change of HbA1c in the replication stage. CONCLUSION: IL1B rs1143623 and EEF1A1P11-RPL7P9 rs10783050 polymorphisms may contribute to metformin's glucose-lowing efficacy in overweight or obese Chinese T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Hipoglucemiantes/uso terapéutico , Interleucina-1beta/genética , Metformina/uso terapéutico , Obesidad/complicaciones , Sobrepeso/complicaciones , Polimorfismo Genético/genética , Anciano , Pueblo Asiatico , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Genotipo , Hemoglobina Glucada/análisis , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...