Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 392, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580686

RESUMEN

Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.


Asunto(s)
Estudio de Asociación del Genoma Completo , Plantones , Plantones/genética , Zea mays/fisiología , Fenotipo , Tolerancia a la Sal/genética
2.
Front Plant Sci ; 13: 992799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388478

RESUMEN

Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.

3.
BMC Genet ; 21(1): 124, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198624

RESUMEN

BACKGROUND: R2R3 myeloblastosis (MYB) genes are widely distributed in plants and comprise one of the largest transcription factor gene families. They play important roles in the regulatory networks controlling development, metabolism, and stress responses. Researches on functional genes in tree peony are still in its infancy. To date, few MYB genes have thus far been reported. RESULTS: In this study, we constructed a comprehensive reference gene set by transcriptome sequencing to obtain R2R3 MYB genes. The transcriptomes of eight different tissues were sequenced, and 92,837 unigenes were obtained with an N50 of 1662 nt. A total of 48,435 unigenes (77.98%) were functionally annotated in public databases. Based on the assembly, we identified 57 R2R3 MYB genes containing full-length open reading frames, which clustered into 35 clades by phylogenetic analysis. PsMYB57 clustered with anthocyanin regulation genes in Arabidopsis and was mainly transcribed in the buds and young leaves. The overexpression of PsMYB57 induced anthocyanin accumulation in tobacco, and four detected anthocyanin structural genes, including NtCHS, NtF3'H, NtDFR, and NtANS, were upregulated. The two endogenous bHLH genes NtAn1a and NtAn1b were also upregulated and may work in combination with PsMYB57 in regulating anthocyanin structural genes. CONCLUSIONS: Our study offers a useful reference to the selection of candidate MYB genes for further functional studies in tree peony. Function analysis of PsMYB57 is helpful to understand the color accumulation in vegetative organs of tree peony. PsMYB57 is also a promising resource to improve plant color in molecular breeding.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Paeonia/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis , Genes de Plantas , Familia de Multigenes , Filogenia , Plantas Modificadas Genéticamente , Nicotiana , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA