Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(14): 12687-12693, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28339179

RESUMEN

Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O2-, which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

2.
Chemistry ; 21(28): 10149-59, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26043440

RESUMEN

Heterojunctions of g-C3 N4 /Al2 O3 (g-C3 N4 =graphitic carbon nitride) are constructed by an in situ one-pot hydrothermal route based on the development of photoactive γ-Al2 O3 semiconductor with a mesoporous structure and a high surface area (188 m(2) g(-1) ) acting as electron acceptor. A structure modification function of g-C3 N4 for Al2 O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone-pair electrons of the N atoms. The as-synthesized heterojunctions exhibit much higher photocatalytic activity than pure g-C3 N4 . The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g-C3 N4 /Al2 O3 under visible-light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g-C3 N4 . The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...