Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Plant Sci ; : 112114, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735397

RESUMEN

Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.

2.
BMC Plant Biol ; 24(1): 404, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750451

RESUMEN

BACKGROUND: Ubiquitin-specific proteases (UBPs) are a large family of deubiquitinating enzymes (DUBs). They are widespread in plants and are critical for plant growth, development, and response to external stresses. However, there are few studies on the functional characteristics of the UBP gene family in the important staple crop, maize (Zea mays L.). RESULTS: In this study, we performed a bioinformatic analysis of the entire maize genome and identified 45 UBP genes. Phylogenetic analysis indicated that 45 ZmUBP genes can be divided into 15 subfamilies. Analysis of evolutionary patterns and divergence levels indicated that ZmUBP genes were present before the isolation of dicotyledons, were highly conserved and subjected to purifying selection during evolution. Most ZmUBP genes exhibited different expression levels in different tissues and developmental stages. Based on transcriptome data and promoter element analysis, we selected eight ZmUBP genes whose promoters contained a large number of plant hormones and stress response elements and were up-regulated under different abiotic stresses for RT-qPCR analysis, results showed that these genes responded to abiotic stresses and phytohormones to varying degrees, indicating that they play important roles in plant growth and stress response. CONCLUSIONS: In this study, the structure, location and evolutionary relationship of maize UBP gene family members were analyzed for the first time, and the ZmUBP genes that may be involved in stress response and plant growth were identified by combining promoter element analysis, transcriptome data and RT-qPCR analysis. This study informs research on the involvement of maize deubiquitination in stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Filogenia , Proteasas Ubiquitina-Específicas , Zea mays , Zea mays/genética , Zea mays/enzimología , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genes de Plantas , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética
3.
BMC Plant Biol ; 24(1): 376, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714947

RESUMEN

BACKGROUND: Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS: A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS: Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.


Asunto(s)
Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloruro de Sodio/farmacología , Filogenia , Bicarbonato de Sodio/farmacología , Estrés Salino/genética , Estrés Fisiológico/genética , Genoma de Planta
4.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676821

RESUMEN

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Asunto(s)
Cucumis sativus , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Tricotecenos , Cucumis sativus/microbiología , Tricotecenos/metabolismo , ARN Ribosómico 16S/genética , Ácidos Grasos/metabolismo , ADN Bacteriano/genética , China , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Genoma Bacteriano
5.
Antonie Van Leeuwenhoek ; 117(1): 14, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170333

RESUMEN

A Gram-stain-positive, rod-shaped, non-spore-forming, alkane degrading bacterium, designated DJM-14T, was isolated from oilfield alkali-saline soil in Heilongjiang, Northeast China. On the basis of 16 S rRNA gene sequencing, strain DJM-14T was shown to belong to the genus Nocardioides, and related most closely to Nocardioides terrigena KCTC 19,217T (95.53% 16 S rRNA gene sequence similarity). Strain DJM-14T was observed to grow at 25-35 °C, pH 7.0-11.0, in the presence of 0-6.0% (w/v) NaCl. The predominant respiratory quinone was MK-8 (H4) and LL-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The major fatty acids were identified as iso-C16:0 and C18:1 ω9c. It contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids. The genome (3,722,608 bp), composed of 24 contigs, had a G + C content of 69.6 mol%. Out of the 3667 predicted genes, 3618 were protein-coding genes, and 49 were ncRNAs. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity (ANI) of strain DJM-14T against genomes of the type strains of related species in the same family ranged between 18.7% and 20.0%; 68.8% and 73.6%, respectively. According to phenotypic, genotypic and phylogenetic data, strain DJM-14T represents a novel species in the genus Nocardioides, for which the name Nocardioides limicola sp. nov. is proposed and the type strain is DJM-14T (= CGMCC 4.7593T, =JCM 33,692T). In addition, novel strains were able to grow with n-alkane (C24-C36) as the sole carbon source. Multiple copies of alkane 1-monooxygenase (alkB) gene, as well as alcohol dehydrogenase gene and aldehyde dehydrogenase gene involved in the alkane assimilation were annotated in the genome of type strain DJM-14T.


Asunto(s)
Nocardioides , Fosfolípidos , Fosfolípidos/química , Nocardioides/genética , Suelo , Filogenia , Yacimiento de Petróleo y Gas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ácidos Grasos/química , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
6.
Microbiol Spectr ; 12(1): e0318423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38047695

RESUMEN

IMPORTANCE: Fatty acid (FA) contents can be altered in Chlorella JB6 in the presence of sodium bicarbonate (NaHCO3). Overexpression of the FA de novo synthesis genes inhibited the growth of JB6 cells and decreased their resistance to NaHCO3, but these transgenic JB6 strains could grow in a medium containing as high as 300 mM NaHCO3. In JB6, ectopic expression of the FA de novo synthesis genes increased the synthesis of very long-chain saturated FA (> 20C).


Asunto(s)
Chlorella , Chlorella/genética , Chlorella/metabolismo , Ácidos Grasos/metabolismo , Biomasa
7.
Front Microbiol ; 14: 1285796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033574

RESUMEN

Carbonate stress has profound impacts on both agricultural and industrial production. Although a number of salinity-tolerant genes have been reported and applied in plants, there is a lack of research on the role of cell wall-related genes in resistance to carbonate. Likewise, in industry, current strategies have not been able to more effectively address the conflict between stress-induced microalgal biofuel accumulation and microalgal growth inhibition. It is of great significance to study the adaptation mechanism of carbonate-tolerant organisms and to explore related genes for future genetic modification. In this study, the role of the cell wall in the NaHCO3-tolerant chlorella JB17 was investigated. We found that JB17 possesses a relatively thick cell wall with a thickness of 300-600 nm, which is much higher than that of the control chlorella with a thickness of about 100 nm. Determination of the cell wall polysaccharide fractions showed that the cellulose content in the JB17 cell wall increased by 10.48% after NaHCO3 treatment, and the decrease in cellulose levels by cellulase digestion inhibited its resistance to NaHCO3. Moreover, the saccharide metabolome revealed that glucose, rhamnose, and trehalose levels were higher in JB17, especially rhamnose and trehalose, which were almost 40 times higher than in control chlorella. Gene expression detection identified an up-regulated expressed gene after NaHCO3 treatment, JbKOBITO1, overexpression of which could improve the NaHCO3 tolerance of Chlamydomonas reinhardtii. As it encodes a glycosyltransferase-like protein that is involved in cellulose synthesis, the strong tolerance of JB17 to NaHCO3 may be partly due to the up-regulated expression of JbKOBITO 1 and JbKOBITO 1-mediated cellulose accumulation. The above results revealed a critical role of cellulose in the NaHCO3 resistance of JB17, and the identified NaHCO3-tolerance gene will provide genetic resources for crop breeding in saline-alkali soils and for genetic modification of microalgae for biofuel production.

8.
Theor Appl Genet ; 136(10): 210, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728763

RESUMEN

Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.


Asunto(s)
Señalización del Calcio , Calcio , Estrés Salino , Frío , Calor
9.
Front Cell Dev Biol ; 11: 1198794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397261

RESUMEN

Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.

10.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511037

RESUMEN

Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-ß, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430436

RESUMEN

INDETERMINATE DOMAIN (IDD) proteins, a family of transcription factors unique to plants, function in multiple developmental processes. Although the IDD gene family has been identified in many plants, little is known about it in moso bamboo. In this present study, we identified 32 PheIDD family genes in moso bamboo and randomly sequenced the full-length open reading frames (ORFs) of ten PheIDDs. All PheIDDs shared a highly conserved IDD domain that contained two canonical C2H2-ZFs, two C2HC-ZFs, and a nuclear localization signal. Collinearity analysis showed that segmental duplication events played an important role in expansion of the PheIDD gene family. Synteny analysis indicated that 30 PheIDD genes were orthologous to those of rice (Oryza sativa). Thirty PheIDDs were expressed at low levels, and most PheIDDs exhibited characteristic organ-specific expression patterns. Despite their diverse expression patterns in response to exogenous plant hormones, 8 and 22 PheIDDs responded rapidly to IAA and 6-BA treatments, respectively. The expression levels of 23 PheIDDs were closely related to the outgrowth of aboveground branches and 20 PheIDDs were closely related to the awakening of underground dormant buds. In addition, we found that the PheIDD21 gene generated two products by alternative splicing. Both isoforms interacted with PheDELLA and PheSCL3. Furthermore, both isoforms could bind to the cis-elements of three genes (PH02Gene17121, PH02Gene35441, PH02Gene11386). Taken together, our work provides valuable information for studying the molecular breeding mechanism of lateral organ development in moso bamboo.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Oryza/genética , Oryza/metabolismo , Dedos de Zinc/genética
12.
Front Plant Sci ; 13: 850064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356113

RESUMEN

The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family proteins are plant-specific transcription factors that have been well-acknowledged for designing the architectures of plant branch, shoot, and inflorescence. However, evidence for their innovation and emerging role in abiotic stress has been lacking. In this study, we identified a total of 36 TCP genes in Populus trichocarpa, 50% more than that in Arabidopsis (i.e., 24). Comparative intra-genomes showed that such significant innovation was mainly due to the most recent whole genome duplication (rWGD) in Populus lineage around Cretaceous-Paleogene (K-Pg) boundary after the divergence from Arabidopsis. Transcriptome analysis showed that the expressions of PtrTCP genes varied among leaf, stem, and root, and they could also be elaborately regulated by abiotic stresses (e.g., cold and salt). Moreover, co-expression network identified a cold-associated regulatory module including PtrTCP31, PtrTCP10, and PtrTCP36. Of them, PtrTCP10 was rWGD-duplicated from PtrTCP31 and evolved a strong capability of cold induction, which might suggest a neofunctionalization of PtrTCP genes and contribute to the adaptation of Populus lineage during the Cenozoic global cooling. Evidentially, overexpression of PtrTCP10 into Arabidopsis increased freezing tolerance and salt susceptibility. Integrating co-expression network and cis-regulatory element analysis confirmed that PtrTCP10 can regulate the well-known cold- and salt-relevant genes (e.g., ZAT10, GolS2, and SOS1), proving that PtrTCP10 is an evolutionary innovation in P. trichocarpa response to environmental changes. Altogether, our results provide evidence of the rWGD in P. trichocarpa responsible for the innovation of PtrTCP genes and their emerging roles in environmental stresses.

13.
Food Res Int ; 152: 110906, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35181078

RESUMEN

Salted radish is a popular high-salinity table food in China, and nitrite is always generated during the associated pickling process. However, this nitrite can be naturally degraded, and the underlying mechanism is unknown. Here, we identified the microbial groups that dominate the natural degradation of nitrite in salted radish and clarified the related metabolic mechanism. Based on dynamic monitoring of pH and the concentrations of nitrogen compounds as well as high-throughput sequencing analysis of the structural succession of microbial communities in the tested salted radish, we determined that the halophilic archaea derived from pickling salt dominate the natural degradation of nitrite via denitrification. Based on isolation, identification, nitrite reduction assays, and genome annotation, we further determined that Haloarcula, Halolamina, and Halobacterium were the key genera. These halophilic archaea might cope with high salt stress through the "salt-in" mechanism with the assistance of the accumulation of potassium ions, obtain electrons necessary for "truncated denitrification" from the metabolism of extracellular glucose absorbed from salted radish, and efficiently reduce nitrite to nitrogen, bypassing nitrite generation from nitrate reduction. The present study provides important information for the prevention and control of nitrite hazards in salted vegetables with high salinity, such as salted radish.


Asunto(s)
Nitritos , Raphanus , China , Nitratos , Nitritos/metabolismo , Nitrógeno/metabolismo , Raphanus/química
14.
Plant J ; 110(4): 978-993, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218100

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.


Asunto(s)
Populus , ARN Largo no Codificante , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Populus/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/fisiología , Estrés Salino/genética
15.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216125

RESUMEN

The development of floral organs is coordinated by an elaborate network of homeotic genes, and gibberellin (GA) signaling is involved in floral organ development; however, the underlying molecular mechanisms remain elusive. In the present study, we found that MOS4-ASSOCIATED COMPLEX 5A (MAC5A), which is a protein containing an RNA-binding motif, was involved in the development of sepals, petals, and stamens; either the loss or gain of MAC5A function resulted in stamen malformation and a reduced seed set. The exogenous application of GA considerably exacerbated the defects in mac5a null mutants, including fewer stamens and male sterility. MAC5A was predominantly expressed in pollen grains and stamens, and overexpression of MAC5A affected the expression of homeotic genes such as APETALA1 (AP1), AP2, and AGAMOUS (AG). MAC5A may interact with RABBIT EARS (RBE), a repressor of AG expression in Arabidopsis flowers. The petal defect in rbe null mutants was at least partly rescued in mac5a rbe double mutants. These findings suggest that MAC5A is a novel factor that is required for the normal development of stamens and depends on the GA signaling pathway.


Asunto(s)
Flores/efectos de los fármacos , Giberelinas/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Homeobox/efectos de los fármacos , Genes Homeobox/genética , Genes de Plantas/efectos de los fármacos , Genes de Plantas/genética , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/efectos de los fármacos , Polen/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Sci ; 315: 111130, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067300

RESUMEN

Soil salinization is a major factor impacting modern agricultural production, and alkaline soils contain large amounts of NaHCO3. Therefore, understanding plant tolerance to high levels of NaHCO3 is essential. In this study, a transcriptome analysis of shoot and root tissues of wild-type Arabidopsis thaliana was conducted at 0, 4, 12, 24 and 48 h after exposure to a 3 mM NaHCO3 stress. We focused on differentially expressed genes (DEGs) in roots identified in the early stages (4 h and 12 h) of the NaHCO3 stress response that were enriched in GO term, carboxylic acid metabolic process, and utilize HCO3-. Six genes were identified that exhibited similar expression patterns in both the RNA-seq and qRT-PCR data. We also characterized the phenotypic response of AtMCCA-overexpressing plants to carbonate stress, and found that the ability of AtMCCA-overexpressing plants to tolerate carbonate stress was enhanced by the addition of biotin to the growth medium.


Asunto(s)
Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Carbamatos/efectos adversos , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
17.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768799

RESUMEN

Serine/arginine-rich (SR) proteins are important splicing factors in plant development and abiotic/hormone-related stresses. However, evidence that SR proteins contribute to the process in woody plants has been lacking. Using phylogenetics, gene synteny, transgenic experiments, and RNA-seq analysis, we identified 24 PtSR genes and explored their evolution, expression, and function in Popolus trichocarpa. The PtSR genes were divided into six subfamilies, generated by at least two events of genome triplication and duplication. Notably, they were constitutively expressed in roots, stems, and leaves, demonstrating their fundamental role in P. trichocarpa. Additionally, most PtSR genes (~83%) responded to at least one stress (cold, drought, salt, SA, MeJA, or ABA), and, especially, cold stress induced a dramatic perturbation in the expression and/or alternative splicing (AS) of 18 PtSR genes (~75%). Evidentially, the overexpression of PtSCL30 in Arabidopsis decreased freezing tolerance, which probably resulted from AS changes of the genes (e.g., ICE2 and COR15A) critical for cold tolerance. Moreover, the transgenic plants were salt-hypersensitive at the germination stage. These indicate that PtSCL30 may act as a negative regulator under cold and salt stress. Altogether, this study sheds light on the evolution, expression, and AS of PtSR genes, and the functional mechanisms of PtSCL30 in woody plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus/metabolismo , Factores de Empalme de ARN/metabolismo , Estrés Fisiológico , Empalme Alternativo , Arabidopsis/genética , Especificidad de Órganos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Factores de Empalme de ARN/genética , Temperatura
18.
Plant Physiol Biochem ; 167: 651-664, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34488151

RESUMEN

As harbingers of bursting growth, flower buds and leaf buds generally show similar surface morphologies but different structural and functional changes. Dioecious plants further generate four types of Female/Male Flower/Leaf Buds (FFB, FLB, MFB, and MLB), showing a complex regulation. However, little is known about their underlying molecular mechanisms. Here, we exemplify the woody dioecious Salix linearistipularis to investigate their morphological characteristics and potential molecular mechanisms by combining cytological, physiological, phenological, and transcriptomic datasets. First, FFB and MFB have simultaneous development dynamics and so do FLB and MLB. Interestingly, FLB and MLB show very similar expression profiles preparing for photosynthesis and stress-tolerance, whereas FFB and MFB show great similarities but also striking sexual differences. Comparing flower buds and leaf buds after their revival from dormancy shows different cold- and vernalization-responsive genes (e.g. SliVRN1, SliAGL19, and SliAGL24), implying different programming processes for dormancy breaking between the buds. Moreover, except SliAP3, the expression of ABCDE model genes is consistent with their roles in the buds, suggesting a conserved mechanism of flower development between dioecious Salix and hermaphrodite Arabidopsis. Finally, considering sex-associated genes (e.g. SliCLE25, SliTPS21, and SliARR9) on Salix chromosomes and other reports, we hypothesize a dynamic model of sex determination on chromosomes 15 and 19 in the last ancestor of Salix and Populus but evolutionarily on 15 in Salix after their divergence. Together, our study provides new insights into the molecular mechanisms of dioecious four-type buds by showing the genes involved in their development, dormancy breaking, flowering, and sexual association.


Asunto(s)
Salix , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salix/genética , Salix/metabolismo
19.
Front Microbiol ; 12: 686998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220778

RESUMEN

Plant-beneficial microbes have drawn wide attention due to their potential application as bio-control agents and bio-fertilizers. Moso bamboo, which is among the monocots with the highest growth rate, lives perennially with abundant microbes that may benefit annually growing crops. Genome information of moso bamboo associated bacteria remains underexplored. We isolated and identified a novel Paraburkholderia strain Suichang626 from moso bamboo roots. Growth promoting effects of Suichang626 on both moso bamboo and seedlings of the model dicot Arabidopsis thaliana were documented in laboratory conditions. To gain insight into the genetic basis of this growth promotion effect, we sequenced the genome of Suichang626. Evidenced by genome-wide phylogeny data, we propose that Suichang626 is a novel strain of Paraburkholderia sacchari. Gene homologs encoding biosynthesis of the plant growth-promoting chemicals, acetoin and 2,3-butanediol, were identified in the genome of Suichang626. Comparative genomics was further performed with plant-beneficial and plant/animal pathogenic species of Paraburkholderia and Burkholderia. Genes related to volatile organic compounds, nitrogen fixation, and auxin biosynthesis were discovered specifically in the plant growth-promoting species of both genera.

20.
FEBS Open Bio ; 11(9): 2600-2606, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34320276

RESUMEN

NDR/LATS-family protein kinases are conserved among eukaryotes. These protein kinases in yeast and animals phosphorylate specific targets and regulate the cell cycle. Arabidopsis thaliana has eight NDR/LATS-family protein kinase genes (NDR1-8), of which NDR2, NDR4, and NDR5 are involved in regulating pollen development. However, the functions of the other NDR/LATS-family protein kinase genes in plants are unclear. Here, we show that three putative phosphorylation sites of an Arabidopsis basic leucine zipper transcription factor, VIP1, correspond to NDR/LATS-family protein kinase phosphorylation motifs and that two of these three sites are phosphorylated by NDR2, NDR3, or NDR8 in vitro. Expression of NDR1-8 was detected in various tissues. An NDR4 NDR6 NDR7 NDR8 quadruple mutation caused embryonic lethality These results suggest that different NDR/LATS-family protein kinases in plants have distinct physiological roles.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Desarrollo de la Planta/genética , Proteínas Quinasas/genética , Factores de Transcripción/genética , Arabidopsis/clasificación , Fosforilación , Filogenia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...