Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Clin Pharmacol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654529

RESUMEN

Voriconazole is the first-line treatment for invasive aspergillosis. Its pharmacokinetics exhibit considerable inter- and intra-individual variability. The purpose of this study was to investigate the effects of CYP2C19, CYP2C9, CYP3A4, and FMO3 genetic polymorphisms and sex on the pharmacokinetics of voriconazole in healthy Chinese adults receiving single-dose and multiple-dose voriconazole, to provide a reference for its clinical individualized treatment. A total of 123 healthy adults were enrolled in the study, with 108 individuals and 15 individuals in the single-dose and multiple-dose doses, respectively. Plasma voriconazole concentrations were measured using a validated LC-MS/MS method, and pharmacokinetics parameters were calculated using the non-compartmental method with WinNonlin 8.2. CYP2C19, CYP2C9, CYP3A4, and FMO3 single-nucleotide polymorphisms were sequenced using the Illumina Hiseq X-Ten platform. The results suggested that CYP2C19 genetic polymorphisms significantly affected the pharmacokinetics of voriconazole at single doses of 4, 6, and 8 mg/kg and multiple doses of voriconazole. CYP3A4 rs2242480 had a significant effect on AUC0-∞ (area under the plasma concentration-time curve from time 0 to infinity) and MRT (mean residence time) of voriconazole at a single dose of 4 mg/kg in CYP2C19 extensive metabolizer. Regardless of the CYP2C19 genotype, CYP2C9 rs1057910 and FMO3 rs2266780 were not associated with the pharmacokinetics of voriconazole at three single-dose levels or multiple doses. No significant differences in most voriconazole pharmacokinetics parameters were noted between male and female participants after single and multiple dosing. For patients receiving voriconazole treatment, CYP2C19 genetic polymorphisms should be genotyped for its precision administration. In contrast, based on our study of healthy Chinese adults, it seems unnecessary to consider the effects of CYP2C9, CYP3A4, and FMO3 genetic polymorphisms on voriconazole pharmacokinetics.

2.
Clin Pharmacol Ther ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429919

RESUMEN

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis superinfection with cytokine storm is associated with increased mortality. This study aimed to establish a physiologically-based pharmacokinetic (PK) model to investigate the disease-drug-drug interactions between voriconazole and nirmatrelvir/ritonavir in patients with COVID-19 with elevated interleukin-6 (IL-6) levels carrying various CYP2C19 phenotypes. The model was constructed and validated using PK data on voriconazole, ritonavir, and IL-6, and was subsequently verified against clinical data from 78 patients with COVID-19. As a result, the model predicted voriconazole, ritonavir, and IL-6 PK parameters and drug-drug interaction-related fold changes in healthy subjects and patients with COVID-19 with acceptable prediction error, demonstrating its predictive capability. Simulations indicated ritonavir could increase voriconazole exposure to CYP2C19 intermediate and poor metabolizers rather than decrease it, in contrast to what is indicated in the drug package insert. However, the predicted ritonavir exposures were comparable across subjects. In patients with COVID-19, both ritonavir and IL-6 increased voriconazole trough concentrations, which may lead to CYP2C19 phenotype-dependent overexposure. In conclusion, COVID-19-induced IL-6 elevation and ritonavir increased voriconazole exposure, and the magnitude of interactions was influenced by CYP2C19 phenotype. Thus, caution is warranted when prescribing voriconazole concomitantly with Paxlovid in patients with COVID-19.

3.
Chem Biol Interact ; 387: 110811, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37993078

RESUMEN

Ciprofol is a novel intravenous anesthetic agent. Its major glucuronide metabolite, M4, is found in plasma and urine. However, the specific isoforms of UDP-glucuronosyltransferases (UGTs) that metabolize ciprofol to M4 remain unknown. This study systematically characterized UGTs that contribute to the formation of M4 using human liver microsomes (HLM), human intestinal microsomes (HIM), and human recombinant UGTs. The inhibitory potential of ciprofol and M4 against major human UGTs and cytochrome P450 enzymes (P450s) was also explored. In vitro-in vivo extrapolation (IVIVE) and physiologically-based pharmacokinetic (PBPK) simulations were performed to predict potential in vivo drug-drug interactions (DDIs) caused by ciprofol. Glucuronidation of ciprofol followed Michaelis-Menten kinetics in both HLM and HIM with apparent Km values of 345 and 412 µM, Vmax values of 2214 and 444 nmol min-1·mg protein-1, respectively. The in vitro intrinsic clearances (CLint = Vmax/Km) for ciprofol glucuronidation by HLM and HIM were 6.4 and 1.1 µL min-1·mg protein-1, respectively. Human recombinant UGT studies revealed that UGT1A9 is the predominant isoform mediating M4 formation, followed by UGT1A7, with UGT1A8 playing a minor role. Ciprofol competitively inhibited CYP1A2 (Ki = 12 µM) and CYP2B6 (Ki = 4.7 µM), and noncompetitively inhibited CYP2C19 (Ki = 29 µM). No time-dependent inhibition by ciprofol was noted for CYP1A2, CYP2B6, or CYP2C19. In contrast, M4 showed limited or no inhibitory effects against selected P450s. Neither ciprofol nor M4 inhibited UGTs significantly. Initial IVIVE suggested potential ciprofol-mediated inhibition of CYP1A2, CYP2B6, and CYP2C19 inhibition in vivo. However, PBPK simulations showed no significant effect on phenacetin, bupropion, and S-mephenytoin exposure or peak plasma concentration. Our findings are pertinent for future DDI studies of ciprofol as either a perpetrator or victim drug.


Asunto(s)
Citocromo P-450 CYP1A2 , Microsomas Hepáticos , Humanos , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Microsomas Hepáticos/metabolismo , Glucuronosiltransferasa/metabolismo , Interacciones Farmacológicas , Cinética
4.
Front Pharmacol ; 14: 1260599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074142

RESUMEN

Background: Ciprofol, a novel sedative-hypnotic drug, has been approved for its use in inducing and maintaining general anesthesia, as well as for providing sedation. Methods: In this phase I, single-center, parallel, controlled, open-label clinical trial, our objective was to analyze the pharmacokinetics (PK), pharmacodynamics (PD), and safety of ciprofol emulsion in 24 participants with mild and moderate renal impairment (n = 8 per group) and matched healthy participants (n = 8). An initial loading infusion of ciprofol was administered at 0.4 mg/kg for 1 min, followed by a maintenance infusion at a rate of 0.4 mg/kg/h for 30 min. We collected plasma and urine samples from the participants to assess the PK of ciprofol and its metabolite M4. The evaluation of PD involved using a modified observer's alertness/sedation scale (MOAA/S) in combination with bispectral index (BIS) monitoring. Safety assessments were conducted throughout the trial process. Results: The plasma concentration-time curve of ciprofol in participants with renal impairment was similar to that in participants with normal kidney function. The area under the curve (AUC) and maximum concentration (Cmax) of total and unbound ciprofol in plasma for participants with renal impairment were only slightly higher (0.7-1.2-fold) than those in participants with normal renal function. In contrast, for the metabolite M4, AUC values were 1.3- and 2.1-fold greater in participants with mild and moderate renal impairment, respectively, than in healthy controls. However, renal impairment had no significant impact on the PD parameters. The study found that ciprofol was well-tolerated, with all adverse events (AEs) reported being mild or moderate in severity. Conclusion: Based on these findings, we can conclude that no dosage adjustment of ciprofol is necessary for patients with mild-moderate renal impairment who receive the injection. Clinical Trial Registration: https://clinicaltrials.gov, identifier NCT04142970.

5.
Front Public Health ; 11: 1185036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900027

RESUMEN

Objective: In the context of "internet + medical health" and emphasis on evaluation mechanism for medical and health talents in China, we design an evaluation index system for doctors on online medical platforms by synthesizing two patterns of existing online medical platforms, which is the first step to enhance the capabilities of doctors on online medical platforms. Methods: Based on the doctor evaluation model integrating information systems success model (ISS-DE model) and grounded theory, the evaluation indicators were obtained through expert interviews, offline medical institutions investigation, online platforms investigation, and literature research, and were assigned weights using the analytic hierarchy process (AHP) method. A working group composed of 23 experts was set up to review and determine the competency standards of doctors on the online medical platforms. Results: A new indicator framework covering 3 dimensions of system quality, service quality and information quality was constructed in this study. The index system included 3 first-level indicators, 8 s-level indicators and 60 third-level indicators, and each indicator was given different weightage. Conclusion: The complete index system constructed by the Delphi method in this study is suitable for China's online medical platforms, which will help to improve the quality of platforms and the ability of doctors, thus promoting the process of internet medical integration.


Asunto(s)
Médicos , Humanos , China , Teoría Fundamentada , Sistemas de Información
6.
Adv Healthc Mater ; 12(29): e2300326, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643370

RESUMEN

Biomechanical stimuli derived from the extracellular matrix (ECM) extremely tune stem cell fate through 3D and spatiotemporal changes in vivo. The matrix stiffness is a crucial factor during bone tissue development. However, most in vitro models to study the osteogenesis of mesenchymal stem cells (MSCs) are static or stiffening in a 2D environment. Here, a dynamic and controllable stiffening 3D biomimetic model is created to regulate the osteogenic differentiation of MSCs with a dual-functional gelatin macromer that can generate a double-network hydrogel by sequential enzymatic and light-triggered crosslinking reactions. The findings show that these dynamic hydrogels allowed cells to spread and expand prior to the secondary crosslinking and to sense high stiffness after stiffening. The MSCs in the dynamic hydrogels, especially the hydrogel stiffened at the late period, present significantly elevated osteogenic ECM secretion, gene expression, and nuclear localization of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). In vivo evaluation of animal experiments further indicates that the enhancement of dynamic stiffening on osteogenesis of MSCs substantially promotes bone remodeling. Consequently, this work reveals that the 3D dynamic stiffening microenvironment as a critical biophysical cue not only mediates the stem cell fate in vitro, but also augments bone restoration in vivo.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Hidrogeles/farmacología , Hidrogeles/metabolismo , Osteogénesis , Diferenciación Celular , Matriz Extracelular/metabolismo
7.
Br J Clin Pharmacol ; 89(3): 1139-1151, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217805

RESUMEN

AIMS: The aim of this study was to develop a population pharmacokinetic (PK) model to simultaneously describe both total and unbound concentrations of ciprofol and its major glucuronide metabolite, M4, and to link it to the population pharmacodynamics (PD) model in subjects with various renal functions. METHODS: A total of 401 and 459 pairs of total and unbound plasma concentrations of ciprofol and M4, respectively, as well as 2190 bispectral index (BIS) data from 24 Chinese subjects with various renal functions were available. Covariates that may potentially contribute to the PK and PD variability of ciprofol were screened using a stepwise procedure. The optimal ciprofol induction dosing regimen was determined by model-based simulations. RESULTS: The PK of unbound ciprofol could best be described by a three-compartment model, while a two-compartment model could adequately describe unbound M4 PK. The concentrations of total and unbound ciprofol and M4 were linked using a linear protein binding model. The relationship between plasma concentrations of ciprofol and BIS data was best described by an inhibitory sigmoidal Emax model with a two-compartment biophase distribution compartment. Hemoglobin was the identified covariate determining the central compartment clearance of ciprofol; uric acid was a covariate affecting the central compartment clearance of M4 and protein binding rate, kB . The included covariates had no effect on the PD of ciprofol. Simulation results indicated that the label-recommended dose regimen was adequate for anaesthesia induction. CONCLUSIONS: The developed model fully characterized the population PK and PD profiles of ciprofol. No dose adjustment is required in patients with mild and moderate renal impairment.


Asunto(s)
Riñón , Modelos Biológicos , Humanos , Relación Dosis-Respuesta a Droga , Riñón/fisiología
8.
Adv Healthc Mater ; 12(16): e2201242, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35948299

RESUMEN

To repair systematically osteoporotic bone defects, it is important to make an effort to both diminish osteoporosis and enhance bone regeneration. Herein, a specifically monoporous microsphere (MPM) carrier encapsulating dosage-sensitive and short half-time parathyroid hormone (PTH) is constructed to tackle the issue. Compared with conventional microsphere carriers involving compact, porous, and mesoporous microspheres, the MPM is desirable to achieve precisely in situ delivery and to minimize topical accumulation. The findings show that the PTH loaded inside MPMs can be gradually released from the single hole of MPMs to improve the initial drug concentration. Also, the MPMs can self-shift with the daily movement of experimental animals to effectively reduce the topical aggregation of released drugs in vitro. In vivo evaluation further confirms that the implant of MPMs-PTH plays a dual role in stimulating the regenerative repair of the cranial defect and relieving osteoporosis in the whole body. Consequently, the current work develops a dynamically movable drug delivery system to achieve precisely in situ delivery, minimize topical accumulation, and systematically repair osteoporotic bone defects.


Asunto(s)
Portadores de Fármacos , Osteoporosis , Animales , Portadores de Fármacos/farmacología , Microesferas , Regeneración Ósea , Sistemas de Liberación de Medicamentos , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico , Osteoporosis/tratamiento farmacológico
9.
Sci Rep ; 12(1): 21268, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481756

RESUMEN

Progestin and adipoQ receptor family member 4 (PAQR4) is a protein-coding gene. Recent studies have shown that PAQR4 is related to the development of multiple cancers. However, there is no systematic pan-cancer analysis of this gene. In this study, the expression of PAQR4, correlations with clinical prognosis, immune situation, and its potential molecular functions and mechanisms in pan-cancer were explored by bioinformatics analysis. The Cancer Genome Atlas was applied to investigate the relations between PAQR4 and clinical features, prognostic effects, and tumor immune microenvironment. R software was used to perform statistical analysis and figure creation. The expression of PAQR4 in BLCA and KIRC was validated by qRT-PCR and immunohistochemistry, and its function was explored by cellular experiments. Bioinformatics analysis revealed that PAQR4 was up-regulated in multiple cancers and related to poor prognosis. The high expression of PAQR4 was closely associated with high tumor stage, immune cell infiltration, tumor mutation burden, and microsatellite instability in different cancer types. In addition, the high expression of PAQR4 also indicated involvement in the immune regulatory pathways. The involvement of PAQR4 in the immune regulation of different tumors was confirmed by GSEA enrichment analysis. Moreover, PAQR4 was highly expressed in bladder cancer and renal clear cell carcinoma tissues and cell lines. Cell proliferation, migration, and invasion of bladder cancer and renal clear cell carcinoma cell lines were significantly decreased after the knockdown of PAQR4. This study elucidated the role of PAQR4 in carcinogenesis as well as tumor immunity. PAQR4 may serve as a potential prognostic biomarker in a variety of cancers.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Microambiente Tumoral/genética , Neoplasias de la Vejiga Urinaria/genética
10.
Acta Biomater ; 154: 168-179, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210044

RESUMEN

Microfracture treatment that is basically relied on stem cells and growth factors in bone marrow has achieved a certain progress for cartilage repair in clinic. Nevertheless, the neocartilage generated from the microfracture strategy is limited endogenous regeneration and prone to fibrosis due to the influences of cell inflammation and vascular infiltration. To explore the crucial factor for articular cartilage remodeling, here we design a trilaminar osteochondral scaffold with a selective permeable film in middle isolation layer which can prevent stem cells, immune cells, and blood vessels in the bone marrow from invading into the cartilage layer, but allow the nutrients and cytokines to penetrate. Our findings show that the trilaminar scaffold exhibits a good biocompatibility and inflammatory regulation, but the osteochondral repair is far less effective than the control of double-layer scaffold without isolation layer. These results demonstrate that it is not adequate to rely only on nutrients and cytokines to promote reconstruction of articular cartilage, and the various cells in bone marrow are indispensable. Consequently, the current study illustrates that cell infiltration involving stem cells, immune cells and other cells from bone marrow plays a crucial role in articular cartilage remodeling based on the integrated scaffold strategy. STATEMENT OF SIGNIFICANCE: Clinical microfracture treatment plays a certain role on the restoration of injured cartilage, but the regenerative cartilage is prone to be fibrocartilage due to the modulation of bone marrow cells. Herein, we design a trilaminar osteochondral scaffold with a selective permeable film in middle isolation layer. This specific film made of dense electrospun nanofiber can prevent bone marrow cells from invading into the cartilage layer, but allow the nutrients and cytokines to penetrate. Our conclusion is that the cartilage remodeling will be extremely inhibited when the bone marrow cells are blocking. Owing to the diverse cells in bone marrow, we will further explore the influence of each cell type on cartilage repair in our continuous future work.


Asunto(s)
Cartílago Articular , Andamios del Tejido , Ingeniería de Tejidos/métodos , Huesos , Células de la Médula Ósea
11.
Pharm Res ; 39(8): 1921-1933, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35725843

RESUMEN

PURPOSE: Venetoclax (VEN), an anti-tumor drug that is a substrate of cytochrome P450 3A enzyme (CYP3A4), is used to treat leukemia. Voriconazole (VCZ) is an antifungal medication that inhibits CYP3A4. The goal of this study is to predict the effect of VCZ on VEN exposure. METHOD: Two physiological based pharmacokinetics (PBPK) models were developed for VCZ and VEN using the bottom-up and top-down method. VCZ model was also developed to describe the effect of CYP2C19 polymorphism on its pharmacokinetics (PK). The reversible inhibition constant (Ki) of VCZ for CYP3A4 was calibrated using drug-drug interaction (DDI) data of midazolam and VCZ. The clinical verified VCZ and VEN model were used to predict the DDI of VCZ and VEN at clinical dosing scenario. RESULT: VCZ model predicted VCZ exposure in the subjects of different CYP2C19 genotype and DDI related fold changes of sensitive CYP3A substrate with acceptable prediction error. VEN model can capture PK of VEN with acceptable prediction error. The DDI PBPK model predicted that VCZ increased the exposure of VEN by 4.5-9.6 fold. The increase in VEN exposure by VCZ was influenced by subject's CYP2C19 genotype. According to the therapeutic window, VEN dose should be reduced to 100 mg when co-administered with VCZ. CONCLUSION: The PBPK model developed here could support individual dose adjustment of VEN and DDI risk assessment. Predictions using the robust PBPK model confirmed that the 100 mg dose adjustment is still applicable in the presence of VCZ with high inter-individual viability.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Citocromo P-450 CYP3A , Modelos Biológicos , Sulfonamidas , Voriconazol , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP3A/genética , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Interacciones Farmacológicas , Humanos , Sulfonamidas/farmacocinética , Voriconazol/farmacocinética
12.
Acta Biomater ; 141: 190-197, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041901

RESUMEN

Osteochondral lesion potentially causes a variety of joint degenerative diseases if it cannot be treated effectively and timely. Microfracture as the conservative surgical choice achieves limited results for the larger defect whereas cartilage patches trigger integrated instability and cartilage fibrosis. To tackle aforementioned issues, here we explore to fabricate an integrated osteochondral scaffold for synergetic regeneration of cartilage and subchondral bone in one system. On the macro level, we fabricated three integrated scaffolds with distinct channel patterns of Non-channel, Consecutive-channel and Inconsecutive-channel via Selective Laser Sintering (SLS). On the micro level, both cartilage zone and subchondral bone zone of integrated scaffold were made of small polycaprolactone (PCL) microspheres and large PCL microspheres, respectively. Our findings showed that Inconsecutive-channel scaffolds possessed integrated hierarchical structure, adaptable compression strength, gradient interconnected porosity. Cartilage zone presented a dense phase for the inhibition of vessel invasion while subchondral bone zone generated a porous phase for the ingrowth of bone and vessel. Both cartilage regeneration and subchondral bone remodeling in the group of Inconsecutive-channel scaffolds have been demonstrated by histological evaluation and immunofluorescence staining in vivo. Consequently, our current work not only achieves an effective and regenerative microsphere scaffold for osteochondral reconstruction, but also provides a feasible methodology to recover injured joint through integrated design with diverse hierarchy. STATEMENT OF SIGNIFICANCE: Recovery of osteochondral lesion highly depends on hierarchical architecture and tunable vascularization in distinct zones. We therefore design a special integrated osteochondral scaffold with inconsecutive channel structure and vascularized modulation. The channel pattern impacts on mechanical strength and the infiltration of bone marrow, and eventually triggers synergetic repair of osteochondral defect. The cartilage zone of integrated scaffolds consisted of small PCL microspheres forms a dense phase for physical restriction of vascularized infiltration whereas the subchondral bone zone made of large PCL microspheres generates porous trabecula-like structure for promoting vascularization. Consequently, the current work indicates both mechanical adaptation and regional vascularized modulation play a pivotal role on osteochondral repair.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Biomimética , Microesferas , Poliésteres , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
Chem Biol Interact ; 352: 109775, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34910929

RESUMEN

Vicagrel, an antiplatelet drug candidate targeting platelet P2Y12 receptor and has finished its phase II clinical trial. The inhibition of six major cytochrome P450 enzymes (P450) (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six UDP-glucuronosyltransferases (UGT) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) by vicagrel was evaluated using pooled human liver microsomes and specific probe substrates. Physiology-based pharmacokinetic (PBPK) simulation was further applied to predict the in vivo drug-drug interaction (DDI) potential between vicagrel and bupropion as well as S-mephenytoin. The results suggested that vicagrel inhibited CYP2B6 and CYP2C19 potently with apparent IC50 values of 1.6 and 2.0 µM, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of CYP2B6-catalyzed bupropion hydroxylation and noncompetitive inhibition of CYP2C19-mediated S-mephenytoin 4'-hydroxylation with Ki values of 0.19 µM and 1.2 µM, respectively. Vicagrel displayed profound time-dependent inhibition towards CYP2B6 with maximal rate constant of inactivation (kinact) and half-maximal inactivator concentration (KI) values of 0.062 min-1 and 1.52 µM, respectively. No time-dependent inhibition by vicagrel was noted for CYP2C19. For UGT, negligible to moderate inhibition by vicagrel was observed with IC50 values of >50.0, >50.0, 28.2, 8.7, >50.0 and 28.2 µM for UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of UGT1A6-catalyzed N-Acetylserotonin ß-D-glucuronidation with a Ki value of 5.6 µM. No time-dependent inhibition by vicagrel was noted for UGT1A6. PBPK simulation indicated that neither altered AUC nor Cmax of bupropion and S-mephenytoin was observed in the presence of vicagrel. Our study provides inhibitory constants for future DDI prediction between vicagrel and drug substrates of CYP2B6, CYP2C19 and UGT1A6. In addition, our simulation suggests the lack of clinically important DDI between vicagrel and bupropion or S-mephenytoin.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Fenilacetatos/farmacología , Tiofenos/farmacología , Bupropión/administración & dosificación , Bupropión/farmacocinética , Simulación por Computador , Citocromo P-450 CYP2B6/metabolismo , Inhibidores del Citocromo P-450 CYP2B6/administración & dosificación , Inhibidores del Citocromo P-450 CYP2B6/farmacología , Citocromo P-450 CYP2C19/metabolismo , Inhibidores del Citocromo P-450 CYP2C19/administración & dosificación , Inhibidores del Citocromo P-450 CYP2C19/farmacología , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Glucuronosiltransferasa/metabolismo , Humanos , Técnicas In Vitro , Cinética , Mefenitoína/administración & dosificación , Mefenitoína/farmacocinética , Fenilacetatos/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/farmacología , Tiofenos/administración & dosificación
14.
Front Pharmacol ; 12: 761763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819863

RESUMEN

Background: Sorafenib (SOR) is an oral, potent, selective, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used as the first-line therapy for advanced hepatocellular carcinoma (HCC). Baicalin (BG) is used as adjuvant therapy for hepatitis, which accounts for the leading cause of the development of HCC, and is commonly coadministered with SOR in clinic. The purpose of the current study was to characterize the pharmacokinetic changes of SOR and the potential mechanism when SOR is administered concomitantly with BG in rats for single and multiple doses. Methods: Parallel randomized pharmacokinetic studies were performed in rats which received SOR (50 mg/kg, i.g.) alone or coadministered with BG (160 mg/kg, i.g.) for single and multiple doses (7 days). Plasma SOR levels were quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Rat liver microsomes (RLMs) which isolated from their livers were analyzed for CYP3A and SOR metabolism activities. The inhibitory effect of BG on the metabolism of SOR was also assessed in pooled human liver microsomes (HLMs). The effects of BG on the intestine absorption behaviors of SOR were assessed in the in situ single-pass rat intestinal perfusion model. Results: Coadministration with BG (160 mg/kg, i.g.) for single or multiple doses significantly increased the Cmax, AUC0-t, and AUC0-∞ of orally administered SOR by 1.68-, 1.73-, 1.70-fold and 2.02-, 1.65-, 1.66- fold in male rats and by 1.85-, 1.68-, 1.68-fold and 1.57-, 1.25-, 1.24- fold in female rats, respectively (p < 0.01 or p < 0.05). In vitro incubation assays demonstrated that there were no significant differences of K m , V max , and CL int of 1-OH MDZ and SOR N-oxide in RLMs between control and multiple doses of BG-treated groups. BG has no obvious inhibitory effects on the metabolism of SOR in HLMs. In comparison with SOR alone, combining with BG significantly increased the permeability coefficient (P eff ) and absorption rate constant (K a ) of the SOR in situ single-pass rat intestinal perfusion model. Conclusion: Notably enhanced oral bioavailability of SOR by combination with BG in rats may mainly account for BG-induced SOR absorption. A greater understanding of potential DDIs between BG and SOR in rats makes major contributions to clinical rational multidrug therapy in HCC patients. Clinical trials in humans and HCC patients need to be further confirmed in the subsequent study.

15.
Front Pharmacol ; 12: 761814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721047

RESUMEN

Ticagrelor is the first reversibly binding, direct-acting, oral P2Y12 receptor inhibitor. The contribution of UDP-glucuronosyltransferases (UGTs) enzymes to the metabolism of ticagrelor to its glucuronide conjugation, ticagrelor-O-glucuronide, in human liver microsomes (HLM) and human intestinal microsomes (HIM), was well characterized in the current study. The inhibition potential of human major UGTs by ticagrelor and ticagrelor-O-glucuronide was explored. The inhibitory effects of ticagrelor-O-glucuronide on cytochrome P450s (CYPs) enzymes were investigated as well. Ticagrelor glucuronidation exhibits substrate inhibition kinetics in both HLM and HIM with apparent Km values of 5.65 and 2.52 µM, Vmax values of 8.03 and 0.90 pmol min-1·mg protein-1, Ksi values of 1,343.0 and 292.9 respectively. The in vitro intrinsic clearances (V max/K m) for ticagrelor glucuronidation by HLM and HIM were 1.42 and 0.36 µl min-1·mg protein-1, respectively. Study with recombinant human UGTs suggested that multiple UGT isoforms including UGT1A9, UGT1A7, UGT1A3, UGT1A4, UGT1A1, UGT2B7 and UGT1A8 are involved in the conversion of ticagrelor to ticagrelor-O-glucuronide with UGT1A9 showing highest catalytic activity. The results were further supported by the inhibition studies on ticagrelor glucuronidation with typical UGT inhibitors in pooled HLM and HIM. Little or no inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7 by ticagrelor and ticagrelor-O-glucuronide was noted. Ticagrelor-O-glucuronide also exhibited limited inhibitory effects toward CYP2C8, CYP2D6 and CYP3A4. In contrast, ticagrelor-O-glucuronide weakly inhibited CYP2B6, CYP2C9 and CYP2C19 activity with apparent IC50 values of 45.0, 20.0 and 18.8 µM, respectively. The potential of ticagrelor-O-glucuronide to cause drug-drug interactions warrant further study.

16.
Pharm Res ; 38(10): 1639-1644, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729703

RESUMEN

PURPOSE: Previous studies evaluating ticagrelor drug-drug interactions have not differentiated intestinal versus systemic mechanisms, which we do here. METHODS: Using recently published methodologies from our laboratory to differentiate metabolic- from transporter-mediated drug-drug interactions, a critical evaluation of five published ticagrelor drug-drug interactions was carried out to investigate the purported clinical significance of enzymes and transporters in ticagrelor disposition. RESULTS: The suggested CYP3A4 inhibitors, ketoconazole and diltiazem, displayed unchanged mean absorption time (MAT) and time of maximum concentration (Tmax) values as was expected, i.e., the interactions were mainly mediated by metabolic enzymes. The potential CYP3A4/P-gp inhibitor cyclosporine also showed an unchanged MAT value. Further analysis assuming there was no P-gp effect suggested that the increased AUC and unchanged t1/2 for ticagrelor after cyclosporine administration were attributed to the inhibition of intestinal CYP3A4 rather than P-gp. Rifampin, an inducer of CYP3As after multiple dosing, unexpectedly showed decreased MAT and Tmax values, which cannot be completely explained. In contrast, grapefruit juice, an intestinal CYP3A/P-gp/OATP inhibitor, significantly increased MAT and Tmax values for ticagrelor, which may be due to activation of P-gp or inhibition of OATPs expressed in intestine. CONCLUSIONS: This study provides new insight into the role of transporter pathways in ticagrelor intestinal absorption by examining potential MAT and Tmax changes mediated by drug-drug interactions.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ciclosporina/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ticagrelor/metabolismo , Citrus paradisi , Ciclosporina/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Diltiazem/metabolismo , Interacciones Farmacológicas , Jugos de Frutas y Vegetales , Humanos , Absorción Intestinal , Intestinos , Cetoconazol/metabolismo , Rifampin/metabolismo , Ticagrelor/farmacocinética
17.
Plant Physiol ; 187(3): 1551-1576, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618054

RESUMEN

Measuring leaf area index (LAI) is essential for evaluating crop growth and estimating yield, thereby facilitating high-throughput phenotyping of maize (Zea mays). LAI estimation models use multi-source data from unmanned aerial vehicles (UAVs), but using multimodal data to estimate maize LAI, and the effect of tassels and soil background, remain understudied. Our research aims to (1) determine how multimodal data contribute to LAI and propose a framework for estimating LAI based on remote-sensing data, (2) evaluate the robustness and adaptability of an LAI estimation model that uses multimodal data fusion and deep neural networks (DNNs) in single- and whole growth stages, and (3) explore how soil background and maize tasseling affect LAI estimation. To construct multimodal datasets, our UAV collected red-green-blue, multispectral, and thermal infrared images. We then developed partial least square regression (PLSR), support vector regression, and random forest regression models to estimate LAI. We also developed a deep learning model with three hidden layers. This multimodal data structure accurately estimated maize LAI. The DNN model provided the best estimate (coefficient of determination [R2] = 0.89, relative root mean square error [rRMSE] = 12.92%) for a single growth period, and the PLSR model provided the best estimate (R2 = 0.70, rRMSE = 12.78%) for a whole growth period. Tassels reduced the accuracy of LAI estimation, but the soil background provided additional image feature information, improving accuracy. These results indicate that multimodal data fusion using low-cost UAVs and DNNs can accurately and reliably estimate LAI for crops, which is valuable for high-throughput phenotyping and high-spatial precision farmland management.


Asunto(s)
Productos Agrícolas/anatomía & histología , Aprendizaje Automático , Hojas de la Planta/anatomía & histología , Dispositivos Aéreos No Tripulados/estadística & datos numéricos , Zea mays/anatomía & histología , China , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Granjas , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Zea mays/fisiología
18.
Drug Metab Pharmacokinet ; 39: 100362, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34242938

RESUMEN

Sorafenib was suggested to cause drug-drug interaction (DDI) with the common anticoagulant, warfarin based on published studies. The inhibition on CYP2C9 enzyme was thought to be the mechanism, but further studies are warranted. Thus, a mechanistic PBPK/PD model for warfarin enantiomers was developed to predict DDI potential with sorafenib, aiming at providing reference for the rational use of both drugs. PBPK models of warfarin enantiomers were constructed by Simcyp software. A mechanistic PK/PD model was built in NONMEM software. PBPK model of sorafenib was fitted via a top-down method. The final PBPK/PD model of warfarin enantiomers was verified and validated by different dosing regimens, ethnicities and genetic polymorphisms, and used to perform DDI simulations between warfarin racemate and sorafenib among general populations and sub-populations with various CYP2C9 and VKORC1 genotypes. Results suggested low DDI risk between warfarin and sorafenib for general populations. Potentially serious consequence was seen for those carrying both CYP2C9 ∗2 and ∗3 and VKORC1 A/A genotypes. This PBPK/PD modeling approach for warfarin enantiomers enabled DDI evaluation with sorafenib. Close monitoring and warfarin dosage adjustment were recommended for patients carrying mutant genotypes. The novel model could be applied to investigate other drugs that may interact with warfarin.


Asunto(s)
Coagulación Sanguínea , Citocromo P-450 CYP2C9/genética , Interacciones Farmacológicas/fisiología , Hemorragia , Sorafenib , Vitamina K Epóxido Reductasas/genética , Warfarina , Anticoagulantes/metabolismo , Anticoagulantes/farmacocinética , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Simulación por Computador , Relación Dosis-Respuesta a Droga , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Humanos , Relación Normalizada Internacional , Modelos Biológicos , Modelos Teóricos , Pruebas de Farmacogenómica/métodos , Medición de Riesgo/métodos , Sorafenib/metabolismo , Sorafenib/farmacocinética , Warfarina/metabolismo , Warfarina/farmacocinética
19.
Front Pharmacol ; 12: 696165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326771

RESUMEN

Tebipenem pivoxil (TBPM-PI), an oral carbapenem antibiotic, has shown special advantages in pediatric infections and was in urgent need in China. Although pharmacokinetics, urinary excretion, and metabolite information of its active form tebipenem (TBPM) has been reported, ethnic differences may exist among the Chinese and Japanese population. By now, no systematic pharmacokinetics, urinary excretion, metabolites, or safety information has been revealed to the Chinese population. The purpose of the present work was to investigate abovementioned information of TBPM-PI granules after oral single ascending doses of 100, 200, and 400 mg in Chinese volunteers. Based on the pharmacokinetic study, the urine pharmaco-metabolomic analysis was conducted to reveal metabolomic interruptions and metabolite information. The study design was a single-center, open-label, randomized, single-dose pharmacokinetic study of 36 healthy volunteers (with half of them being male and the other half female). Time to maximum concentration (T max) was reached at 0.50, 0.50, or 0.67 h for 100, 200, or 400 mg, respectively. The linear pharmacokinetic characteristic of maximum plasma concentration (C max) was detected over 100-200 mg. The area under the concentration time curve (AUC) was proportional to the dose in the range of 100-400 mg. The maximum urinary excretion rate was detected at 0-1 or 1-2 h for dose of 100 or 200-400 mg. Cumulative amount of TBPM excreted in urine by 24 h accounted up to 90, 95, and 80% of dose administered for three groups, respectively. The pharmaco-metabolomic analysis revealed urine metabolic trajectory of deviation at 0-1 or 1-2 h and gradually regressing back to the pre-dose group at the following time periods. Urine metabolites from M1 to M4 were identified, indicating ethnic difference in metabolites among the Chinese or Japanese population. The current work proved safety and tolerance of single-dose administration of oral TBPM-PI in Chinese healthy volunteers over doses of 100-400 mg. All these results provide pharmacokinetics, urine excretion, urine metabolomics, urine metabolites, and safety information in healthy Chinese volunteers after oral single ascending doses of TBPM-PI, benefitting further development and clinical utilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...