Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 281: 116624, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908058

RESUMEN

The objectives of this study were to measure the mediation effect of plasma proteins and to clarify their mediating role in the relationship between stroke risk and particulate matter 2.5 (PM2.5) exposure. The possible mediating role of plasma proteins on the causative link between PM2.5 exposure and stroke incidence were examined using a two-step Mendelian randomization (MR) approach based on two-sample Mendelian randomization (TSMR). The findings revealed a significant positive causal relationship between PM2.5 exposure and stroke, with an inverse variance weighted odds ratio of 1.219 (95 % CI: 1.002 - 1.482, P < 0.05). Additionally, a positive causal association was identified between PM2.5 exposure and several plasma proteins, including FAM134B, SAP, ITGB7, Elafin, and DCLK3. Among these, FAM134B, ITGB7, Elafin, and DCLK3 also demonstrated a positive causal association with stroke, whereas only SAP was found to be negatively causally associated with stroke. Remarkably, four plasma proteins, namely DCLK3, FAM134B, Elafin, and ITGB7, were identified as mediators, accounting for substantial proportions (14.5 %, 13.6 %, 11.1 %, and 9.9 %) of the causal association between PM2.5 and stroke. These results remained robust across various sensitivity analyses. Consequently, the study highlights the significant and independent impact of PM2.5 on stroke risk and identifies specific plasma proteins as potential targets for preventive interventions against PM2.5-induced stroke.

2.
Int Immunopharmacol ; 134: 112179, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710118

RESUMEN

BACKGROUND: There was a large body of evidence linking immune cells to cancer risk. However, the causal relationship between immune cells, cancer, and what genes play an important role is unclear. METHODS: In this study, we performed comprehensive two-sample Mendelian randomization analysis (TSMR) to determine the causal relationship between immune cells and common cancers. We also performed Multimarker Analysis of Genomic Annotation (MAGMA) on immune cells causally associated with cancer to identify their relevant genes and used data summary-based MR (SMR) analysis to investigate the causal relationship between their gene expression, methylation, and cancer, and further used drug prediction and molecular docking to validate the medicinal value of the targets. Finally, reverse TSMR analysis was performed on cancer and immune cells to rule out reverse causality. RESULTS: After FDR correction (PFDR < 0.05), the results showed that 2 immune cells were associated with lung cancer risk, and 1 immune cell was significantly associated with pancreatic cancer risk. The expression of OSBPL10, CHD4, SMDT1, PHETA2, and NAGA was positively and causally related to the risk of lung cancer by SMR analysis and HEIDI test. We also found that increased expression of ANP32E decreased the risk of pancreatic cancer and that the methylation level of OSBPL10, CHD4, SULF2, CENPM, and CYP2D6 had a causal association with lung cancer. The methylation level of FCGR3A was causally associated with pancreatic cancer. The results of molecular docking indicated a strong affinity between the drugs and proteins that possessed existing structural information. CONCLUSION: This data-driven Mendelian randomization (MR) study demonstrates the causal role of immune cells in cancers. In addition, this study identifies candidate genes that may be potential anti-cancer drug targets.


Asunto(s)
Metilación de ADN , Análisis de la Aleatorización Mendeliana , Simulación del Acoplamiento Molecular , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica
3.
Ecotoxicol Environ Saf ; 267: 115660, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948942

RESUMEN

Exposure to nitrogen dioxide might potentially change the makeup and operation of gut microbes. Nitrogen dioxide data was procured from the IEU Open GWAS (N = 456 380). Subsequently, a two-sample Mendelian randomization study was executed, utilizing summary statistics of gut microbiota sourced from the most expansive available genome-wide association study meta-analysis, conducted by the MiBioGen consortium (N = 13 266). The causal relationship between nitrogen dioxide and gut microbiota was determined using inverse variance weighted, maximum likelihood, MR-Egger, Weighted Median, Weighted Model, Mendelian randomization pleiotropy residual sum and outlier, and constrained maximum likelihood and model averaging and Bayesian information criterion. The level of heterogeneity of instrumental variables was quantified by utilizing Cochran's Q statistic. The colocalization analysis was used to examine whether nitrogen dioxide and the identified gut microbiota shared casual variants. Inverse variance weighted estimate suggested that nitrogen dioxide was causally associated with Akkermansia (ß = -1.088, 95% CI: -1.909 to -0.267, P = 0.009). In addition, nitrogen dioxide presented a potential association with Bacteroides (ß = -0.938, 95% CI: -1.592 to -0.284, P = 0.005), Barnesiella (ß = -0.797, 95% CI: -1.538 to -0.055, P = 0.035), Coprococcus 3 (ß = 1.108, 95% CI: 0.048-2.167, P = 0.040), Eubacterium hallii group (E. hallii) (ß = 0.776, 95% CI: 0.090-1.463, P = 0.027), Holdemania (ß = -1.354, 95% CI: -2.336 to -0.372, P = 0.007), Howardella (ß = 1.698, 95% CI: 0.257-3.139, P = 0.021), Olsenella (ß = 1.599, 95% CI: 0.151-3.048, P = 0.030) and Sellimonas (ß = -1.647, 95% CI: -3.209 to -0.086, P = 0.039). No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The associations of nitrogen dioxide with Akkermansia (PH4 = 0.836) and E. hallii (PH4 = 0.816) were supported by colocalization analysis. This two-sample Mendelian randomization study found that increased exposure to nitrogen dioxide had the potential to impact the human gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Teorema de Bayes , Estudio de Asociación del Genoma Completo , Dióxido de Nitrógeno , Distribución Aleatoria
4.
Nutrients ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36558355

RESUMEN

Research shows that reduced sleep duration is related to an increased risk of obesity. The relationship between sleep deprivation and obesity, type 2 diabetes, and other chronic diseases may be related to the imbalance of appetite regulation. To comprehensively illustrate the specific relationship between sleep deprivation and appetite regulation, this review introduces the pathophysiology of sleep deprivation, the research cutting edge of animal models, and the central regulatory mechanism of appetite under sleep deprivation. This paper summarizes the changes in appetite-related hormones orexin, ghrelin, leptin, and insulin secretion caused by long-term sleep deprivation based on the epidemiology data and animal studies that have established sleep deprivation models. Moreover, this review analyzes the potential mechanism of associations between appetite regulation and sleep deprivation, providing more clues on further studies and new strategies to access obesity and metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Privación de Sueño , Animales , Privación de Sueño/complicaciones , Regulación del Apetito , Diabetes Mellitus Tipo 2/complicaciones , Leptina/fisiología , Ghrelina , Obesidad/metabolismo , Apetito/fisiología , Sueño/fisiología
5.
Front Plant Sci ; 11: 513788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281835

RESUMEN

Located downstream of the Yangtze River Delta, the Lake Taihu drainage basin (LTDB) is one of the most developed areas in China. This area currently faces population and development issues, as well as many environmental problems, such as cultural eutrophication, algal blooms, and loss of native aquatic plants. Changes in aquatic biodiversity have received less attention than have changes in terrestrial habitats because relevant observations are lacking. In this study, information from 2010, 2014, and 2018 concerning the transformation of the aquatic plant biodiversity was obtained. The results showed that the dominant aquatic plants have changed from native plants to invasive plants. Aquatic plant biodiversity showed a decreasing trend, which may reduce the freshwater ecosystem function, and anthropogenic activities accounted for these changes. How to prevent the decline in aquatic plants and control the invasion of introduced aquatic plants should be a priority in the management of aquatic plants in the LTDB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...