Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676657

RESUMEN

BACKGROUND: Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS: Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION: Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.

2.
Development ; 149(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815651

RESUMEN

In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration. We found that feeding preferentially upregulated the expression of the JH receptor gene Met and a JH-inducible gene, Kr-h1, in the flight muscles, and, thus, enhanced tissue-specific JH sensitivity and signaling. RNAi-mediated knockdown of Kr-h1 prevented flight-muscle degeneration. Likewise, blocking nutritional signals by pharmacological inhibition of the target of rapamycin complex 1 (TORC1) impaired JH sensitivity of the flight muscles in feeding aphids and subsequently delayed muscle degeneration. RNA-sequencing analysis revealed that enhanced JH signaling inhibited the transcription of genes involved in the tricarboxylic acid cycle, likely resulting in reduction of the energy supply, mitochondrial dysfunction and muscle-fiber breakdown. This study shows that nutrient-dependent hormone sensitivity regulates developmental plasticity in a tissue-specific manner, emphasizing a relatively underappreciated mechanism of hormone sensitivity in modulating hormone signaling.


Asunto(s)
Áfidos , Hormonas Juveniles , Animales , Áfidos/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Músculos/metabolismo , Reproducción , Alas de Animales/metabolismo
3.
Insect Sci ; 28(6): 1621-1632, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33089948

RESUMEN

In insects, 20-hydroxyecdysone (20E) limits systemic growth by triggering developmental transitions. Previous studies have shown that 20E-induced let-7 exhibits crosstalk with the cell cycle. Here, we examined the underlying molecular mechanisms and physiological functions of 20E-induced let-7 in the fat body, an organ for energy storage and nutrient mobilization which plays a critical role in the larval growth. First, the overexpression of let-7 decreased the body size and led to the reduction of both nucleolus and cell sizes in the larval fat body. In contrast, the overexpression of let-7-Sponge increased the nucleolus and cell sizes. Moreover, we found that cdc7, encoding a conserved protein kinase that controls the endocycle, is a target of let-7. Notably, the mutation of cdc7 in the fat body resulted in growth defects. Overall, our findings revealed a novel role of let-7 in the control of endoreduplication-related growth during larval-prepupal transition in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Cuerpo Adiposo , MicroARNs , Proteínas Serina-Treonina Quinasas , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisterona , Cuerpo Adiposo/metabolismo , Larva , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Insect Sci ; 28(2): 485-494, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32174010

RESUMEN

The transcription factor grainy head (Grh) functions in the protection of the epithelium against the external environment by generating strongly adhesive layers, and this function is conserved in vertebrates and invertebrates. In Drosophila, the top model for holometabolous insects, Grh is necessary during embryonic development, epidermal differentiation, central nervous system specification and epithelial repair. However, the function of this gene in hemimetabolous insect epithelia remains unknown. To examine the function of Grh signaling in regulating epithelium development in Hemimetabola, we focused on the Blattella germanica epidermal layer using a gene knockdown strategy. The spatiotemporal expression pattern of BgGrh was detected, and knockdown of BgGrh and BgCad96ca, which provide positive feedback to BgGrh, caused severe defects in new epithelium development and impeded the molting process required to discard the old integument. Knockdown of the expression of BgGrh and BgCad96ca caused increased expression of chitin synthase gene (BgCHS1) and chitinase gene (BgCht5), the upregulations of which should be mediated by the higher level of hormone receptor 3 (BgHr3) gene. In conclusion, epithelium development is regulated by Grh signaling, which might represent a potential target for the control of urban pest cockroaches.


Asunto(s)
Blattellidae/crecimiento & desarrollo , Epitelio/crecimiento & desarrollo , Proteínas de Insectos/genética , Muda/genética , Animales , Blattellidae/genética , Proteínas de Insectos/metabolismo , Ninfa/genética , Ninfa/crecimiento & desarrollo
5.
Insect Sci ; 27(4): 665-674, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207060

RESUMEN

Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr-h1 double-stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr-h1 by Nos-Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.


Asunto(s)
Drosophila melanogaster/fisiología , Hormonas Juveniles/metabolismo , Oogénesis/fisiología , Transducción de Señal , Células Madre Germinales Adultas/fisiología , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Mutación , Ovario/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...