Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 6(8): 944-956, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35953650

RESUMEN

Rapid nucleic acid testing is central to infectious disease surveillance. Here, we report an assay for rapid COVID-19 testing and its implementation in a prototype microfluidic device. The assay, which we named DISCoVER (for diagnostics with coronavirus enzymatic reporting), involves extraction-free sample lysis via shelf-stable and low-cost reagents, multiplexed isothermal RNA amplification followed by T7 transcription, and Cas13-mediated cleavage of a quenched fluorophore. The device consists of a single-use gravity-driven microfluidic cartridge inserted into a compact instrument for automated running of the assay and readout of fluorescence within 60 min. DISCoVER can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva with a sensitivity of 40 copies µl-1, and was 94% sensitive and 100% specific when validated (against quantitative PCR) using total RNA extracted from 63 nasal-swab samples (33 SARS-CoV-2-positive, with cycle-threshold values of 13-35). The device correctly identified all tested clinical saliva samples (10 SARS-CoV-2-positive out of 13, with cycle-threshold values of 23-31). Rapid point-of-care nucleic acid testing may broaden the use of molecular diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Saliva
3.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34354262

RESUMEN

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Asunto(s)
COVID-19/genética , Sistemas CRISPR-Cas/genética , ARN Viral/genética , SARS-CoV-2/genética , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
medRxiv ; 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791736

RESUMEN

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.

5.
medRxiv ; 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33354689

RESUMEN

Rapid nucleic acid testing is a critical component of a robust infrastructure for increased disease surveillance. Here, we report a microfluidic platform for point-of-care, CRISPR-based molecular diagnostics. We first developed a nucleic acid test which pairs distinct mechanisms of DNA and RNA amplification optimized for high sensitivity and rapid kinetics, linked to Cas13 detection for specificity. We combined this workflow with an extraction-free sample lysis protocol using shelf-stable reagents that are widely available at low cost, and a multiplexed human gene control for calling negative test results. As a proof-of-concept, we demonstrate sensitivity down to 40 copies/µL of SARS-CoV-2 in unextracted saliva within 35 minutes, and validated the test on total RNA extracted from patient nasal swabs with a range of qPCR Ct values from 13-35. To enable sample-to-answer testing, we integrated this diagnostic reaction with a single-use, gravity-driven microfluidic cartridge followed by real-time fluorescent detection in a compact companion instrument. We envision this approach for Diagnostics with Coronavirus Enzymatic Reporting (DISCoVER) will incentivize frequent, fast, and easy testing.

6.
J Biol Chem ; 295(42): 14473-14487, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817336

RESUMEN

Among the multiple antiviral defense mechanisms found in prokaryotes, CRISPR-Cas systems stand out as the only known RNA-programmed pathways for detecting and destroying bacteriophages and plasmids. Class 1 CRISPR-Cas systems, the most widespread and diverse of these adaptive immune systems, use an RNA-guided multiprotein complex to find foreign nucleic acids and trigger their destruction. In this review, we describe how these multisubunit complexes target and cleave DNA and RNA and how regulatory molecules control their activities. We also highlight similarities to and differences from Class 2 CRISPR-Cas systems, which use a single-protein effector, as well as other types of bacterial and eukaryotic immune systems. We summarize current applications of the Class 1 CRISPR-Cas systems for DNA/RNA modification, control of gene expression, and nucleic acid detection.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Nucleótidos de Adenina/metabolismo , Animales , ADN/química , ADN/metabolismo , Expresión Génica , Oligorribonucleótidos/metabolismo , ARN/antagonistas & inhibidores , ARN/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Transducción de Señal
7.
Nat Commun ; 10(1): 3001, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278272

RESUMEN

Type III-A CRISPR-Cas systems are prokaryotic RNA-guided adaptive immune systems that use a protein-RNA complex, Csm, for transcription-dependent immunity against foreign DNA. Csm can cleave RNA and single-stranded DNA (ssDNA), but whether it targets one or both nucleic acids during transcription elongation is unknown. Here, we show that binding of a Thermus thermophilus (T. thermophilus) Csm (TthCsm) to a nascent transcript in a transcription elongation complex (TEC) promotes tethering but not direct contact of TthCsm with RNA polymerase (RNAP). Biochemical experiments show that both TthCsm and Staphylococcus epidermidis (S. epidermidis) Csm (SepCsm) cleave RNA transcripts, but not ssDNA, at the transcription bubble. Taken together, these results suggest that Type III systems primarily target transcripts, instead of unwound ssDNA in TECs, for immunity against double-stranded DNA (dsDNA) phages and plasmids. This reveals similarities between Csm and eukaryotic RNA interference, which also uses RNA-guided RNA targeting to silence actively transcribed genes.


Asunto(s)
Inmunidad Adaptativa/genética , Sistemas CRISPR-Cas/genética , Staphylococcus epidermidis/genética , Thermus thermophilus/genética , Elongación de la Transcripción Genética/inmunología , Bacteriófagos/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN de Cadena Simple/genética , ADN de Cadena Simple/inmunología , ADN de Cadena Simple/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Plásmidos/inmunología , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/inmunología , ARN Guía de Kinetoplastida/metabolismo , Staphylococcus epidermidis/inmunología , Thermus thermophilus/inmunología
8.
PLoS One ; 12(4): e0175612, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384323

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0170552.].

9.
Nature ; 543(7644): 257-260, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28225760

RESUMEN

Organelles display characteristic morphologies that are intimately tied to their cellular function, but how organelles are shaped is poorly understood. The endoplasmic reticulum is particularly intriguing, as it comprises morphologically distinct domains, including a dynamic network of interconnected membrane tubules. Several membrane proteins have been implicated in network formation, but how exactly they mediate network formation and whether they are all required are unclear. Here we reconstitute a dynamic tubular membrane network with purified endoplasmic reticulum proteins. Proteoliposomes containing the membrane-fusing GTPase Sey1p (refs 6, 7) and the curvature-stabilizing protein Yop1p (refs 8, 9) from Saccharomyces cerevisiae form a tubular network upon addition of GTP. The tubules rapidly fragment when GTP hydrolysis of Sey1p is inhibited, indicating that network maintenance requires continuous membrane fusion and that Yop1p favours the generation of highly curved membrane structures. Sey1p also forms networks with other curvature-stabilizing proteins, including reticulon and receptor expression-enhancing proteins (REEPs) from different species. Atlastin, the vertebrate orthologue of Sey1p, forms a GTP-hydrolysis-dependent network on its own, serving as both a fusion and curvature-stabilizing protein. Our results show that organelle shape can be generated by a surprisingly small set of proteins and represents an energy-dependent steady state between formation and disassembly.


Asunto(s)
Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacología , Hidrólisis/efectos de los fármacos , Fusión de Membrana , Proteínas de Transporte de Membrana/ultraestructura , Proteolípidos/química , Proteolípidos/metabolismo , Proteolípidos/ultraestructura , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Transporte Vesicular/ultraestructura
10.
PLoS One ; 12(1): e0170552, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28114398

RESUMEN

CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , ARN Bacteriano/genética , Thermus thermophilus/genética , Catálisis , ADN Bacteriano/metabolismo , Mutación , ARN Bacteriano/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(15): E1851-60, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825753

RESUMEN

Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions.


Asunto(s)
Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Algoritmos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/metabolismo , Hidrólisis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Imagen de Lapso de Tiempo , Vesículas Transportadoras/química
12.
Cell Rep ; 3(5): 1465-75, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23684613

RESUMEN

Lipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size. Similar results were obtained after depletion of atlastin or expression of a dominant-negative mutant, whereas overexpression of atlastin had the opposite effect. Atlastin depletion in Drosophila fat bodies also reduced LD size and decreased triglycerides in whole animals, sensitizing them to starvation. In mammalian cells, co-overexpression of atlastin-1 and REEP1, a paralog of the ER tubule-shaping protein DP1/REEP5, generates large LDs. The effect of atlastin-1 on LD size correlates with its activity to promote membrane fusion in vitro. Our results indicate that atlastin-mediated fusion of ER membranes is important for LD size regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Vesículas Citoplasmáticas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Chlorocebus aethiops , Vesículas Citoplasmáticas/metabolismo , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(32): E2146-54, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22802620

RESUMEN

The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL's ability to generate and maintain ER morphology in vivo. Our results suggest that protein-lipid and protein-protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.


Asunto(s)
Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/metabolismo , Metabolismo de los Lípidos/fisiología , Fusión de Membrana/fisiología , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Fluoresceínas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Componentes del Gen , Humanos , Inmunoprecipitación , Liposomas/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Especificidad de la Especie , Levaduras
14.
Proc Natl Acad Sci U S A ; 108(10): 3976-81, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368113

RESUMEN

The generation of the tubular network of the endoplasmic reticulum (ER) requires homotypic membrane fusion that is mediated by the dynamin-like, membrane-bound GTPase atlastin (ATL). Here, we have determined crystal structures of the cytosolic segment of human ATL1, which give insight into the mechanism of membrane fusion. The structures reveal a GTPase domain and athree-helix bundle, connected by a linker region. One structure corresponds to a prefusion state, in which ATL molecules in apposing membranes interact through their GTPase domains to form a dimer with the nucleotides bound at the interface. The other structure corresponds to a postfusion state generated after GTP hydrolysis and phosphate release. Compared with the prefusion structure, the three-helix bundles of the two ATL molecules undergo a major conformational change relative to the GTPase domains, which could pull the membranes together. The proposed fusion mechanism is supported by biochemical experiments and fusion assays with wild-type and mutant full-length Drosophila ATL. These experiments also show that membrane fusion is facilitated by the C-terminal cytosolic tails following the two transmembrane segments. Finally, our results show that mutations in ATL1 causing hereditary spastic paraplegia compromise homotypic ER fusion.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/química , Fusión de Membrana , Dimerización , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas de la Membrana , Modelos Moleculares , Mutación , Conformación Proteica
15.
ACS Chem Biol ; 5(6): 545-52, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20020775

RESUMEN

A major challenge of protein design is to create useful new proteins that interact specifically with biological targets in living cells. Such binding modules have many potential applications, including the targeted perturbation of protein networks. As a general approach to create such modules, we designed a library with approximately 10(9) different binding specificities based on a small 3-tetratricopeptide repeat (TPR) motif framework. We employed a novel strategy, based on split GFP reassembly, to screen the library for modules with the desired binding specificity. Using this approach, we identified modules that bind tightly and specifically to Dss1, a small human protein that interacts with the tumor suppressor protein BRCA2. We showed that these modules also bind the yeast homologue of Dss1, Sem1. Furthermore, we demonstrated that these modules inhibit Sem1 activity in yeast. This strategy will be generally applicable to make novel genetically encoded tools for systems/synthetic biology applications.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
16.
ACS Chem Biol ; 5(6): 553-62, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20038141

RESUMEN

Designer protein modules, which bind specifically to a desired target, have numerous potential applications. One approach to creating such proteins is to construct and screen libraries. Here we present a detailed description of using a split-GFP reassembly assay to screen libraries and identify proteins with novel binding properties. Attractive features of the split-GFP based screen are the absence of false positives and the simplicity, robustness, and ease of automation of the screen. Here, we describe both the construction of a naive protein library, and screening of the library using the split-GFP assay to identify proteins that bind specifically to chosen peptide sequences.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Biblioteca de Péptidos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Citometría de Flujo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/genética
17.
Methods Enzymol ; 461: 51-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19480914

RESUMEN

Lymphotactin/XCL1, the defining member of the C class of chemokines, undergoes a conformational change that involves the complete restructuring of all stabilizing interactions. Other chemokines are restricted to a single conformation by a pair of conserved disulfide crosslinks, one of which is absent in lymphotactin. This structural interconversion is entirely reversible, and the two-state equilibrium is sensitive to changes in temperature and ionic strength. One species adopts the conserved chemokine fold as a monomer and functions as an agonist for XCR1, the specific G-protein-coupled receptor for lymphotactin. Rearrangement to the other conformation produces a novel four-stranded sheet that dimerizes to form a beta sandwich with high affinity for cell-surface glycosaminoglycans. We developed methods for resolving the two species and investigated the dynamics of human lymphotactin structural interconversion with NMR spectroscopy, heparin affinity chromatography, and time-resolved fluorescence on the wild-type protein and a panel of amino acid-substituted lymphotactin variants. Our results show that the lymphotactin structural rearrangement occurs at a rate of approximately 1/s and that mutation of residues required for glycosaminoglycan binding shifts the conformational equilibrium toward the chemokine-like fold. We speculate that charge repulsion between arginines 23 and 43 destabilizes the chemokine fold and promotes conversion to the novel lymphotactin dimer, whereas binding of chloride or another anion stabilizes the chemokine fold by neutralizing the repulsive effect.


Asunto(s)
Quimiocinas C/química , Secuencia de Aminoácidos , Quimiocinas C/metabolismo , Cromatografía de Afinidad , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...