Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104909, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307917

RESUMEN

Sustainable TGF-ß1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-ß1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis. In activated hepatic stellate cells, folate shifted toward mitochondrial metabolism to sustain TGF-ß1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated hepatic stellate cells. Knocking down serine hydroxymethyltransferase 2 increases the bioconversion of ALA to docosahexaenoic acid, which inhibits TGF-ß1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in nonalcoholic steatohepatitis mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-ßR1 reproduction is a feedforward signaling to sustain profibrotic TGF-ß1 signaling, and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.


Asunto(s)
Ácido Fólico , Cirrosis Hepática , Mitocondrias , Ácido alfa-Linolénico , Animales , Ratones , Ácido alfa-Linolénico/deficiencia , Ácido alfa-Linolénico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hígado/citología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ácido Fólico/metabolismo , Mitocondrias/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/metabolismo , Transducción de Señal , Retroalimentación Fisiológica
2.
J Hazard Mater ; 411: 125137, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858101

RESUMEN

S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on plant growth by inducing hydrogen peroxide (H2O2) levels. The richness of the rhizosphere microbiome markedly decreased after S-ME treatment, although the abundance of some potential beneficial rhizobacteria, such as Rhizobiaceae and Burkholderiaceae, increased suggesting that plants recruited potential beneficial microorganisms to resist S-ME-induced stress. Spearman correlation analysis revealed that Rhizobiaceae and Burkholderiaceae were positively correlated with organic acids secreted by plants after S-ME treatment, implying that potential beneficial microorganisms may be attracted mainly by organic acids. Our results demonstrated the phytotoxicity of S-ME on crop growth and indicated both that S-ME could influence rhizosphere microorganism abundance and that recruitment of potential beneficial microorganisms could be the result of root exudate regulation.


Asunto(s)
Microbiota , Rizosfera , Acetamidas , Exudados y Transudados , Peróxido de Hidrógeno , Raíces de Plantas , Plantones , Microbiología del Suelo , Triticum
3.
Microbiol Res ; 248: 126743, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33713869

RESUMEN

The interaction between plants and microorganisms directly affects plant health and sustainable agricultural development. Leaves represent a wide-area habitat populated by a variety of microorganisms, whose impact on host environmental adaptability could influence plant growth and function. The driving factors for phyllosphere microbiota assemblage are the focus of current research. Here, we investigated the effect of growth stage (i.e., bolting, flowering, and maturation) and genotype of Arabidopsis thaliana (wild-type and the two photosynthetic mutants ndf4 and pgr5) on the composition of phyllosphere microbiota. Our results show that species abundance varied significantly between the three genotypes at different growth stages, whereas species richness and evenness varied only for ndf4. The leaf surface shared a core microbiota dominated by Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes in all tested growth stages and genotypes. Phyllosphere specificity varied more with respect to growth stage than to genotype. In summary, both the growth stage and genotype of A. thaliana are crucial in shaping phyllosphere bacterial composition, with the former being a stronger driver. Our findings provide a novel for investigating whether the host properties influence the phyllosphere community and favor healthy development of plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Bacterias/aislamiento & purificación , Microbiota , Arabidopsis/genética , Bacterias/clasificación , Bacterias/genética , Genotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Microbiología del Suelo
4.
J Environ Sci (China) ; 97: 102-109, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32933724

RESUMEN

An effective broad-spectrum fungicide, azoxystrobin (AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2-0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the secretion of total organic carbon (TOC) in the culture media of the two species, and this phenomenon was also found in a freshwater microcosm experiment (containing the natural microbial community). We attempted to assess the effect of AZ on the function of aquatic microbial communities through metabolomic analysis and further explore the potential risks of this compound. The metabonomic profiles of the microcosm indicated that the most varied metabolites after AZ treatment were related to the citrate cycle (TCA), fatty acid biosynthesis and purine metabolism. We thereby inferred that the microbial community increased extracellular secretions by adjusting metabolic pathways, which might be a stress response to reduce AZ toxicity. Our results provide an important theoretical basis for further study of fungicide stress responses in aquatic microcosm microbial communities, as well as a good start for further explorations of AZ detoxification mechanisms, which will be valuable for the evaluation of AZ environmental risk.


Asunto(s)
Fungicidas Industriales , Microbiota , Agua Dulce , Pirimidinas , Estrobilurinas
5.
J Environ Sci (China) ; 93: 57-65, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32446460

RESUMEN

Imazethapyr (IM) is a widely used acetolactate synthase-inhibiting chiral herbicide. It has long-term residuals that may be absorbed by the human body through the edible parts of plants, such as vegetable leaves or fruits. Here, we selected a model plant, Arabidopsis thaliana, to determine the effects of R-IM and S-IM on its leaf structure, photosynthetic efficiency, and metabolites, as well as the structures of microorganisms in the phyllosphere, after 7 days of exposure. Our results indicated enantiomeric differences in plant growth between R-IM and S-IM; 133 µg/kg R-IM showed heavier inhibition of photosynthetic efficiency and greater changes to subcellular structure than S-IM. R-IM and S-IM also had different effects on metabolism and leaf microorganisms. S-IM mainly increased lipid compounds and decreased amino acids, while R-IM increased sugar accumulation. The relative abundance of Moraxellaceae human pathogenic bacteria was increased by R-IM treatment, indicating that R-IM treatment may increase leaf surface pathogenic bacteria. Our research provides a new perspective for evaluating the harmfulness of pesticide residues in soil, phyllosphere microbiome changes via the regulation of plant metabolism, and induced pathogenic bacterial accumulation risks.


Asunto(s)
Arabidopsis , Microbiota , Metaboloma , Ácidos Nicotínicos , Hojas de la Planta , Estereoisomerismo
6.
J Agric Food Chem ; 68(18): 5024-5038, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32255613

RESUMEN

Microorganisms colonizing the plant rhizosphere provide a number of beneficial functions for their host. Although an increasing number of investigations clarified the great functional capabilities of rhizosphere microbial communities, the understanding of the precise mechanisms underlying the impact of rhizosphere microbiome assemblies is still limited. Also, not much is known about the various beneficial functions of the rhizosphere microbiome. In this review, we summarize the current knowledge of biotic and abiotic factors that shape the rhizosphere microbiome as well as the rhizosphere microbiome traits that are beneficial to plants growth and disease-resistance. We give particular emphasis on the impact of plant root metabolites on rhizosphere microbiome assemblies and on how the microbiome contributes to plant growth, yield, and disease-resistance. Finally, we introduce a new perspective and a novel method showing how a synthetic microbial community construction provides an effective approach to unravel the plant-microbes and microbes-microbes interplays.


Asunto(s)
Microbiota , Desarrollo de la Planta , Microbiología del Suelo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantas/microbiología , Rizosfera
7.
Sci Total Environ ; 716: 137121, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059308

RESUMEN

Imazethapyr (IM) is a chiral herbicide with two enantiomers (R-IM and S-IM). Here, we determined the enantioselective effects of IM on Arabidopsis thaliana biomass and chlorophyll content, root exudates and rhizosphere microbes after 7 days of exposure. The results suggested that 133 µg/kg R-IM enantiomer in soil slightly inhibited plant biomass but S-IM did not exert significant inhibitory effects. The rhizosphere microorganism composition was also found to have enantiomeric differences between R- and S-IM. The relative abundance of beneficial rhizosphere microbes such as Bacillus and Ramlibacter increased much more with R-IM treatment than with S-IM treatment, indicating that the rhizosphere recruited some beneficial microbes to resist the herbicide stress. The IM enantiomers exerted a significant influence on root exudates with enantioselectivity. R-IM resulted in higher levels of most amino acids, organic acids, sugars and other metabolites after 7 days of exposure; few metabolites were increased by only the S-IM treatment. The correlation analyses between compounds (sugars, amino acids and organic acid) and microbes at the genus level revealed that the number of microbes was more positively correlated with organic acids than other compounds, indicating that organic acids can attract more microbes than amino acids and sugars. Some organic acids, such as 3-hydroxybutyric acid, may be a carbon source for the beneficial microbe Ramlibacter. This study increases the understanding of the differences in IM enantiomer toxicity with respect to plant physiological activity and soil microorganisms.


Asunto(s)
Arabidopsis , Ácidos Nicotínicos , Exudados de Plantas , Raíces de Plantas , Rizosfera , Estereoisomerismo
8.
J Environ Sci (China) ; 85: 35-45, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31471029

RESUMEN

Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting herbicide that has been widely used in recent years. However, IM spraying can lead to the accumulation of herbicide residues in leaves. Here, we determined the effects of IM spraying on the plant growth and leaf surface microbial communities of Arabidopsis thaliana after 7 and 14 days of exposure. The results suggested that IM spraying inhibited plant growth. Fresh weight decreased to 48% and 26% of the control value after 7 and 14 days, respectively, of 0.035 kg/ha IM exposure. In addition, anthocyanin content increased 9.2-fold and 37.2-fold relative to the control content after 7 and 14 days of treatment, respectively. Furthermore, IM spraying destroyed the cell structures of the leaves, as evidenced by increases in the number of starch granules and the stomatal closure rate. Reductions in photosynthetic efficiency and antioxidant enzyme activity were observed after IM spraying, especially after 14 days of exposure. The diversity and evenness of the leaf microbiota were not affected by IM treatment, but the composition of community structure at the genus level was altered by IM spraying. Imazethapyr application increased the abundance of Pseudomonas, a genus that includes species pathogenic to plants and humans, indicating that IM potentially increased the abundance of pathogenic bacteria on leaves. Our findings increase our understanding of the relationships between herbicide application and the microbial community structures on plant leaves, and they provide a new perspective for studying the ecological safety of herbicide usage.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Herbicidas/toxicidad , Microbiota/efectos de los fármacos , Ácidos Nicotínicos/toxicidad , Hojas de la Planta/microbiología , Arabidopsis/efectos de los fármacos , Arabidopsis/microbiología , Hojas de la Planta/efectos de los fármacos
9.
Ecotoxicol Environ Saf ; 168: 72-79, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30384169

RESUMEN

Azoxystrobin (AZ) is an effective broad-spectrum fungicide. Due to its extensive application, AZ is detectable in aquatic ecosystems and thus influences aquatic organisms. In this study, the acute toxicity (96 h) of AZ at concentrations of 1.0 mg/L and 5.0 mg/L on the diatom Phaeodactylum tricornutum were examined. At the tested concentrations, AZ significantly inhibited P. tricornutum growth and destroyed its cellular structure. Furthermore, the mechanisms of AZ-induced toxicity on P. tricornutum changed as the exposure time extended. Forty-eight hours after exposure, AZ inhibited P. tricornutum growth primarily via inducing oxidative stress, which increased the activity of two main antioxidant enzymes, superoxide dismutase and peroxidase, and inhibited energy metabolism. However, after 96 h of treatment, the decline in the photosynthetic capacity of P. tricornutum demonstrated that the photosystem was the main AZ target. The pigment content and expression levels of genes related to photosynthetic electron transfer reactions were also significantly decreased. The present study describes AZ toxicity in P. tricornutum and is very valuable for assessing the environmental risk of AZ.


Asunto(s)
Diatomeas/efectos de los fármacos , Fungicidas Industriales/toxicidad , Pirimidinas/toxicidad , Estrobilurinas/toxicidad , Antioxidantes/farmacología , Diatomeas/crecimiento & desarrollo , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Fotosíntesis/efectos de los fármacos , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...