Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707616

RESUMEN

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Glucósidos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fenoles , Polifenoles , Estreptozocina , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Animales , Ratas , Glucósidos/farmacología , Glucósidos/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Fenoles/farmacología , Fenoles/química , Ratas Sprague-Dawley
2.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742197

RESUMEN

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Asunto(s)
Nefropatías Diabéticas , Metabolismo de los Lípidos , Humanos , Nefropatías Diabéticas/metabolismo , Animales , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/complicaciones , Microbioma Gastrointestinal
3.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38325670

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Enfermedades Mitocondriales , Ratas , Animales , Nefropatías Diabéticas/patología , Proteína X Asociada a bcl-2 , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Ubiquitina-Proteína Ligasas/metabolismo , Hipoxia , Proteínas Quinasas/metabolismo
4.
J Diabetes Res ; 2023: 8871677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094870

RESUMEN

Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.


Asunto(s)
Alostasis , Diabetes Mellitus , Nefropatías Diabéticas , Microbioma Gastrointestinal , Humanos , Riñón , Inmunidad Adaptativa
5.
Pharm Biol ; 61(1): 1222-1233, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565668

RESUMEN

CONTEXT: Diabetic nephropathy (DN) is the main cause of end-stage renal disease. Modified Shen-Yan-Fang-Shuai formula (M-SYFSF) has excellent clinical efficacy in treating diabetic kidney disease. However, the potential mechanism of M-SYFSF remains unknown. OBJECTIVE: To investigate the mechanism of M-SYFSF against DN by network pharmacological analysis and biological experiments. MATERIALS AND METHODS: Utilizing a web-based pharmacology database, the potential mechanisms of M-SYFSF against DN were identified. In vivo experiments, male SD rats were injected with streptozotocin (50 mg/kg) and got uninephrectomy to construct a model of DN. M-SYFSF (11.34 g/kg/d) was gavaged once per day for 12 weeks after model establishment. In vitro experiments, human proximal tubular cells (HK-2) were performed with advanced glycation end-products (AGEs) (100 µg/mL), then intervened with M-SYFSF freeze-dried powder. Pathological staining, WB, IHC, ELISA were conducted to explore the mechanism of M-SYFSF against DN. RESULTS: Network pharmacological analysis showed that MAPK pathway was the potential pathway. Results showed that compared with the Model group, M-SYFSF significantly reduced 24h urine albumin, UACR, and serum creatinine levels (54.90 ± 26.67 vs. 111.78 ± 4.28, 8.87 ± 1.69 vs. 53.94 ± 16.01, 11.56 ± 1.70 vs. 118.70 ± 49.57, respectively), and improved renal pathological changes. Furthermore, the intervention of M-SYFSF reduced the expression of pro-inflammatory cytokines and inhibited the activation of MAPK pathway in AGEs-treated HK-2 cells. DISCUSSION AND CONCLUSION: M-SYFSF is likely to reduce inflammation in DN by inhibiting the MAPK pathway. It provides a theoretical basis for the clinical application of M-SYFSF in the treatment of DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Ratas , Masculino , Humanos , Animales , Nefropatías Diabéticas/metabolismo , Farmacología en Red , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Productos Finales de Glicación Avanzada/metabolismo
6.
J Diabetes Res ; 2023: 3931043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287620

RESUMEN

Background: Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), and there is growing evidence to support the role of immunity in the progression of DN to ESRD. Chemokines and chemokine receptors (CCRs) can recruit immune cells to sites of inflammation or injury. Currently, no studies have reported the effect of CCRs on the immune environment during the progression of DN to ESRD. Methods: Differentially expressed genes (DEGs) from the GEO database were identified in DN patients versus ESRD patients. GO and KEGG enrichment analyses were performed using DEGs. A protein-protein interaction (PPI) network was constructed to identify hub CCRs. Differentially expressed immune cells were screened by immune infiltration analysis, and the correlation between immune cells and hub CCRs was also calculated. Result: In this study, a total of 181 DEGs were identified. Enrichment analysis showed that chemokines, cytokines, and inflammation-related pathways were significantly enriched. Combining the PPI network and CCRs, four hub CCRs (CXCL2, CXCL8, CXCL10, and CCL20) were identified. These hub CCRs showed an upregulation trend in DN patients and a downregulation trend in ESRD patients. Immune infiltration analysis identified a variety of immune cells that underwent significant changes during disease progression. Among them, CD56bright natural killer cell, effector memory CD8 T cell, memory B cell, monocyte, regulatory T cell, and T follicular helper cell were significantly associated with all hub CCR correlation. Conclusion: The effect of CCRs on the immune environment may contribute to the progression of DN to ESRD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Citocinas , Monocitos , Inflamación , Biología Computacional
7.
Front Physiol ; 14: 1176894, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362429

RESUMEN

Background: The gut-kidney axis refers to the interaction between the gastrointestinal tract and the kidneys, and its disorders have become increasingly important in the development of kidney diseases. The aim of this study is to identify current research hotspots in the field of the gut-kidney axis from 2003 to 2022 and provide guidance for future research in this field. Methods: We collected relevant literature on the gut-kidney axis from the Web of Science Core Collection (WoSCC) database and conducted bibliometric and visualization analyses using biblioshiny in R-Studio and VOSviewer (version 1.6.16). Results: A total of 3,900 documents were retrieved from the WoSCC database. The publications have shown rapid expansion since 2011, with the greatest research hotspot emerging due to the concept of the "intestinal-renal syndrome," first proposed by Meijers. The most relevant journals were in the field of diet and metabolism, such as Nutrients. The United States and China were the most influential countries, and the most active institute was the University of California San Diego. Author analysis revealed that Denise Mafra, Nosratola D. Vaziri, Fouque, and Denis made great contributions in different aspects of the field. Clustering analysis of the keywords found that important research priorities were "immunity," "inflammation," "metabolism," and "urinary toxin," reflecting the basis of research in the field. Current research frontiers in the field include "hyperuricemia," "gut microbiota," "diabetes," "trimethylamine n-oxide," "iga nephropathy," "acute kidney injury," "chronic kidney disease," "inflammation," all of which necessitate further investigation. Conclusion: This study presents a comprehensive bibliometric analysis and offers an up-to-date outlook on the research related to the gut-kidney axis, with a specific emphasis on the present state of intercommunication between gut microbiota and kidney diseases in this field. This perspective may assist researchers in selecting appropriate journals and partners, and help to gain a deeper understanding of the field's hotspots and frontiers, thereby promoting future research.

8.
Am J Kidney Dis ; 81(4): 434-445.e1, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36396085

RESUMEN

RATIONALE & OBJECTIVE: Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are novel, orally administered agents for anemia management in chronic kidney disease (CKD). We evaluated the cardiac and kidney-related adverse effects of HIF-PHIs among patients with CKD and anemia. STUDY DESIGN: Systematic review and meta-analysis of randomized controlled trials (RCTs). SETTING & STUDY POPULATIONS: Patients with anemia and CKD not receiving maintenance dialysis. SELECTION CRITERIA FOR STUDIES: RCTs comparing HIF-PHIs to placebo or an erythropoiesis-stimulating agent (ESA) with primary outcomes of cardiac and kidney-related adverse events (AEs). DATA EXTRACTION: Two independent reviewers evaluated RCTs for eligibility and extracted relevant data. ANALYTICAL APPROACH: Dichotomous variables were pooled using the Mantel-Haenszel method and presented as risk ratios (RRs). Subgroup analyses evaluated different intervention times and HIF-PHIs, as well as phase 2 versus phase 3 trials. The certainty of findings was rated according to GRADE criteria. RESULTS: Twenty-three studies with 15,144 participants were included. No significant difference in the risk of cardiac AEs was observed between the HIF-PHIs group and the placebo (RR, 1.02 [95% CI, 0.89-1.16]; moderate certainty) or ESA (RR, 1.06 [95% CI, 0.98-1.14]; low certainty) groups. No significant difference in the risk of kidney-related AEs was observed between the HIF-PHIs group and the placebo (RR, 1.09 [95% CI, 0.98-1.20]; moderate certainty) or ESA (RR, 1.00 [95% CI, 0.94-1.06]; low certainty) groups. The occurrence of hypertension and hyperkalemia was higher in the HIF-PHIs group than in the placebo group (RRs of 1.35 [95% CI, 1.14-1.60] and 1.25 [95% CI, 1.03-1.51], respectively; both findings had high certainty). The occurrence of hypertension was lower in the HIF-PHIs group than in the ESA group (RR, 0.89 [95% CI, 0.81-0.98]; moderate certainty). LIMITATIONS: The reporting criteria of cardiac and kidney-related AEs and dosage of HIF-PHIs were inconsistent across trials. CONCLUSIONS: The occurrence of cardiac or kidney-related AEs in the HIF-PHI groups were not different compared with placebo or ESA groups. REGISTRATION: Registered at PROSPERO with registration number CRD42021228243.


Asunto(s)
Anemia , Hematínicos , Hipertensión , Inhibidores de Prolil-Hidroxilasa , Insuficiencia Renal Crónica , Humanos , Inhibidores de Prolil-Hidroxilasa/efectos adversos , Diálisis Renal/efectos adversos , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/tratamiento farmacológico , Anemia/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Hematínicos/efectos adversos , Riñón
10.
Front Cardiovasc Med ; 9: 1043406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523368

RESUMEN

Rosiglitazone (Avandia) and pioglitazone (Actos) belong to the class of thiazolidinediones (TZDs) drugs that act by increasing insulin sensitivity and are widely used for treating diabetic patients with insulin resistance. TZDs exhibit anti-inflammatory and antioxidant properties, then may play an active role in inhibiting plaque formation and coronary atherosclerosis. But the results of evidence-based medicine suggest that TZDs may increase the risk of cardiovascular adverse events. To explore the dispute in depth, our meta-analysis aimed to evaluate the changes in vascular endothelial and plaque-related indicators following treatment with TZDs in diabetic patients with coronary atherosclerosis. According to our meta-analysis, TZDs showed an inhibiting effect on plaque progression and a protective effect on the vascular endothelium in patients with diabetes and coronary atherosclerosis. Interestingly, these effects may not depend on the regulation of inflammation and lipid metabolism. By this token, TZDs may develop a potential protective effect on myocardial infarction. Systematic review registration: [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021231663].

11.
Drug Des Devel Ther ; 16: 4061-4076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36448035

RESUMEN

Background: Triptolide, a major active ingredient isolated from Tripterygium wilfordii Hook f., is effective in the treatment of membranous nephropathy (MN); however, its pharmacological mechanism of action has not yet been clarified. We applied an approach that integrated network pharmacology and experimental validation to systemically reveal the molecular mechanism of triptolide in the treatment of MN. Methods: First, potential targets of triptolide and the MN-related targets were collected from publicly available database. Then, based on a protein-protein interaction network as well as GO and KEGG pathway enrichment analyses, we constructed target-pathway networks to unravel therapeutic targets and pathways. Moreover, molecular docking was applied to validate the interactions between the triptolide and hub targets. Finally, we induced passive Heymann nephritis (PHN) rat models and validated the possible molecular mechanisms of triptolide against MN. Results: The network pharmacology results showed that 118 intersected targets were identified for triptolide against MN, including mTOR, STAT3, CASP3, EGFR and AKT1. Based on enrichment analysis, signaling pathways such as PI3K/AKT, MAKP, Ras and Rap1 were involved in triptolide treatment of MN. Furthermore, molecular docking confirmed that triptolide could bind with high affinity to the PIK3R1, AKT1 and mTOR, respectively. Then, in vivo experiments indicated that triptolide can reduce 24 h urine protein (P < 0.01) and protect against renal damage in PHN. Serum albumin level was significantly increased and total cholesterol, triglycerides, and low-density lipoprotein levels were decreased by triptolide (P < 0.05). Compared with PHN group, triptolide treatment regulated the PI3K/AKT/mTOR pathway according to Western blot analyses. Conclusion: Triptolide could exert antiproteinuric and renoprotective effects in PHN. The therapeutic mechanism of triptolide may be associated with the regulation of PI3K/AKT/mTOR signaling pathway. This study demonstrates the pharmacological mechanism of triptolide in the treatment of MN and provides scientific evidence for basic and clinical research.


Asunto(s)
Glomerulonefritis Membranosa , Animales , Ratas , Glomerulonefritis Membranosa/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
12.
Am J Transl Res ; 14(8): 5833-5847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105034

RESUMEN

OBJECTIVES: Membranous nephropathy (MN) is an autoimmune nephropathy. The incidence of MN is increasing gradually in recent years. Previous studies focused on antibody production, complement activation and podocyte injury in MN. However, the etiology and underlying mechanism of MN remain to be further studied. METHODS: GSE104948 and GSE108109 of glomerular expression profile were downloaded from Gene Expression Omnibus (GEO) database, GSE47184, GSE99325, GSE104954, GSE108112, GSE133288 of renal tubule expression profile, and GSE73953 of peripheral blood mononuclear cells (PBMCs) expression profile. After data integration by Networkanalyst, differentially expressed genes (DEGs) between MN and healthy samples were obtained. DEGs were enriched in gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks of these genes were constructed through Metascape, etc. We further understood the function of hub genes through gene set enrichment analysis (GSEA). The diagnostic value of DEGs in MN was evaluated by receiver operating characteristic (ROC) analysis. RESULTS: A total of 3 genes (TP53, HDAC5, and SLC2A3) were screened out. Among them, the up-regulated TP53 expression may be closely related to MN renal pathological changes. However, the expression of MN podocyte target antigen was not significantly different from that of healthy controls. In addition, the changes of Wnt signaling pathway in PBMCs and the effects of SLC2A3 on the differentiation of M2 monocyte need further study. CONCLUSION: It is difficult to unify a specific mechanism for the changes of glomerulus, renal tubules and PBMCs in MN patients. This may be related to the pathogenesis, pathology and immune characteristics of MN. MN podocyte target antigen may not be the root cause of the disease, but a stage result in the pathogenesis process.

13.
Ren Fail ; 44(1): 806-814, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35856157

RESUMEN

BACKGROUND/OBJECTIVE: Diabetes mellitus is a common "non-gout" disease with high incidence. Several studies have shown that serum uric acid level in patients with diabetes is higher than that in healthy individuals, and is accompanied by severe albuminuria and high serum creatinine (Scr). Recent clinical studies have found that uric acid-lowering therapy (such as allopurinol) could reduce urinary albumin excretion rates (UAER) and Scr, increase eGFR, and thus reduce kidney damage in patients with diabetes. Therefore, this meta-analysis [PROSPERO CRD42021274465] intended to evaluate the efficacy and safety of allopurinol in patients with diabetes mellitus. METHODS: We thoroughly searched five electronic resource databases for randomized controlled trials (RCTs) that compared the efficacy and safety of allopurinol versus conventional treatment or placebo for the treatment of patients with diabetes mellitus. Predetermined outcomes were considered continuous variables, mean difference (MD) was used for the determination of effect size (standardized mean difference [SMD] was used to determine the effect size when there were different evaluation criteria in different articles), and the corresponding 95% confidence interval (CI) was calculated. All outcome measures were analyzed using a random-effects model for data analysis. RESULTS: Ten eligible trials with a total of 866 participants were included in the meta-analysis. Allopurinol was more effective in decreasing serum uric acid (SUA) levels compared with conventional treatment (p = 0.0001) or placebo (p < 0.00001). Moreover, the levels of 24-hour urine protein were significantly lower in the allopurinol group (p < 0.00001). The subgroup analysis of Scr showed that the Scr of patients with an allopurinol treatment duration of fewer than six months was significantly lower than that of the control group (p = 0.03). No significant difference in adverse events (AEs) was identified between the treatment and control groups. CONCLUSIONS: Our meta-analysis of RCTs showed that oral administration of allopurinol effectively reduced SUA levels in patients with diabetes, and patients' renal function was protected. More RCTs with larger sample sizes and higher quality are needed to clarify the role of allopurinol use in decreasing blood pressure, maintaining blood glucose levels, and improving renal function in patients with diabetes.


Asunto(s)
Diabetes Mellitus , Gota , Hiperuricemia , Alopurinol/uso terapéutico , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/tratamiento farmacológico , Supresores de la Gota , Humanos , Hiperuricemia/tratamiento farmacológico , Riñón/fisiología , Ácido Úrico
14.
J Diabetes Res ; 2022: 3770417, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35746917

RESUMEN

Diabetic nephropathy (DN)-chronic kidney damage caused by hyperglycemia-eventually develops into end-stage renal disease (ESRD). Melatonin is a powerful antioxidant that has a wide range of biological activities. Potentially helpful effects of melatonin on diabetic kidney disease have been found in several studies. However, its protective mechanisms are not clear and remain to be explored. In this review (CRD42021285429), we conducted a meta-analysis to estimate the effects and relevant mechanisms of melatonin for diminishing renal injuries in diabetes mellitus models. The Cochrane Library, PubMed, and EMBASE databases up to September 2021 were used. Random- or fixed-effects models were used for calculating the standardized mean difference (SMD) or 90% confidence interval (CI). The risk of bias was estimated using the SYRCLE's RoB tool. Statistical analysis was conducted with RevMan. A total of 15 studies including 224 animals were included in the analysis. The experimental group showed a remarkable decrease in serum creatinine (P = 0.002), blood urea nitrogen (P = 0.02), and urinary albumin excretion rate (UAER) (P < 0.00001) compared with the control group, while the oxidative stress index improved. The experimental group also showed a remarkable increase in superoxide dismutase (P = 0.21), glutathione (P < 0.0001), and catalase (P = 0.04) and a remarkable decrease in MDA (P < 0.00001) content compared with the control group. We concluded that melatonin plays a role in renal protection in diabetic animals by inhibiting oxidative stress. Moreover, it should be noted that fasting blood glucose was reduced in the experimental group compared with the control group. The kidney and body weights of the animals were not decreased in the diabetic animal model compared with the control group.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Melatonina , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Riñón/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Modelos Animales , Estrés Oxidativo
15.
Front Med (Lausanne) ; 9: 793203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280867

RESUMEN

Objective: To evaluate the effects of vitamin E, pioglitazone, sodium-glucose cotransporter-2 (SGLT2) inhibitors, and glucagon-like peptide-1 (GLP-1) receptor agonists in patients with non-alcoholic fatty liver disease (NAFLD). Design: A network meta-analysis. Data Sources: PubMed, Embase, Cochrane Library, and Web of Science databases from their inception until September 1, 2021. Eligibility Criteria for Selecting Studies: Randomized controlled trials (RCTs) comparing the effects of four different drugs in patients with NAFLD were included. All superiority, non-inferiority, phase II and III, non-blinded, single-blinded, and double-blinded trials were included. Interventions of interest included vitamin E (α-tocopherol and δ-tocotrienol), pioglitazone, three kinds of GLP-1 receptor agonists (liraglutide, semaglutide, and dulaglutide), four SGLT2 inhibitors (dapagliflozin, empagliflozin, ipragliflozin, and tofogliflozin), and comparisons of these different drugs, and placebos. Main Outcome Measures: The outcome measures included changes in non-invasive tests [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), controlled attenuation parameter (CAP), enhanced liver fibrosis (ELF) score, liver fat content (LFC), and keratin-18 (K-18)] and invasive tests [fibrosis score and resolution of non-alcoholic steatohepatitis (NASH)]. Results: Twenty-seven trials including 3,416 patients were eligible for inclusion in the study. Results refer to vitamin E, pioglitazone, GLP-1 receptor agonists, and SGLT2 inhibitors. First, placebos were used as a reference. δ-Tocotrienol was superior to placebo in decreasing the GGT level. Semaglutide, ipragliflozin, and pioglitazone induced a significantly higher decrease in the ALT level than a placebo. Semaglutide, pioglitazone, and dapagliflozin were superior to placebo in decreasing the AST level. Tofogliflozin and pioglitazone induced a significantly higher decrease in the K-18 level than a placebo. Liraglutide was superior to placebo in decreasing CAP. Liraglutide, pioglitazone, and vitamin E induced a significantly higher increase in resolution of NASH than a placebo. As for pairwise comparisons, semaglutide and pioglitazone were superior to liraglutide in decreasing the ALT level. Semaglutide induced a significantly higher decrease in the ALT level than dulaglutide. Semaglutide was obviously superior to empagliflozin, liraglutide, dulaglutide, and tofogliflozin in decreasing the AST level. Pioglitazone induced a significantly higher decrease in the GGT level than ipragliflozin. δ-Tocotrienol was superior to liraglutide in decreasing the GGT level. Tofogliflozin and pioglitazone induced a significantly higher decrease in the K-18 level than dulaglutide. Pioglitazone was superior to vitamin E in increasing the resolution of NASH. Furthermore, liraglutide treatment had the highest SUCRA ranking in decreasing CAP and ELF scores and increasing the resolution of NASH. Pioglitazone treatment had the highest SUCRA ranking in decreasing LFC and fibrosis scores. Tofogliflozin treatment had the highest SUCRA ranking in decreasing K-18, while dapagliflozin treatment had the highest SUCRA ranking in decreasing the GGT level. Semaglutide treatment had the highest SUCRA ranking in decreasing the levels of ALT and AST. Conclusion: The network meta-analysis provided evidence for the efficacy of vitamin E, pioglitazone, SGLT2 inhibitors, and GLP-1 receptor agonists in treating patients with NAFLD. To find the best guide-level drugs, it is necessary to include more RCTs with these off-label drugs, so that patients and clinicians can make optimal decisions together. Systematic Review Registration: https://www.crd.york.ac.uk/prospero, identifier: CRD42021283129.

16.
Recent Pat Anticancer Drug Discov ; 17(4): 387-395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023460

RESUMEN

BACKGROUND: Therapeutic resistance is a frequent problem of cancer treatment and a leading cause of mortality in patients with metastatic colorectal cancer (CRC). Recent insight into the mechanisms that confer multidrug resistance has elucidated that the ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) assists cancer cells in escaping therapeutic stress caused by toxic chemotherapy. Therefore, it is necessary to develop ABCG2 inhibitors. OBJECTIVES: In the present study, we investigated the inhibitory effect of KU55933 on ABCG2 in CRC. METHODS: The cytotoxicity assay and drug accumulation assay were used to examine the inhibitory effect of KU55933 on ABCG2. The protein expressions were detected by Western blot assay. The docking assay was performed to predict the binding site and intermolecular interactions between KU55933 and ABCG2. RESULTS: KU55933 was more potent than the known ABCG2 inhibitor fumitremorgin C to enhance the sensitivity of mitoxantrone and doxorubicin and the intracellular accumulation of mitoxantrone, doxorubicin and rhodamine 123 inside CRC cells with ABCG2 overexpression. Moreover, KU55933 did not affect the protein level of ABCG2. Furthermore, the docking data showed that KU55933 was tightly located in the drug-binding pocket of ABCG2. CONCLUSION: In summary, our data presented that KU55933 could effectively inhibit the drug pump activity of ABCG2 in colorectal cancer, which is further supported by the predicted model that showed the hydrophobic interactions of KU55933 within the drug-binding pocket of ABCG2. KU55933 can potently inhibit the activity of ABCG2 in CRC.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos , Neoplasias Colorrectales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Mitoxantrona/farmacología , Morfolinas/farmacocinética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pironas/farmacología
17.
Oxid Med Cell Longev ; 2021: 2074610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956436

RESUMEN

OBJECTIVE: Rhizoma Coptidis is an herb that has been frequently used in many traditional formulas for the treatment of diabetic mellitus (DM) over thousands of years. Berberine, the main active component of Rhizoma Coptidis, has been demonstrated to have the potential effect of hypoglycemia. To determine the potential advantages of berberine for diabetic care, we conducted this systematic review and meta-analysis to examine the efficacy and safety of berberine in the treatment of patients with type 2 DM. METHODS: Eight databases including PubMed, Embase, Web of Science, the Cochrane library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Database (SinoMed), Wanfang Database, and Chinese VIP Information was searched for randomized controlled trials (RCTs) reporting clinical data regarding the use of berberine for the treatment of DM. Publication qualities were also considered to augment the credibility of the evidence. Glycemic metabolisms were the main factors studied, including glycosylated hemoglobin (HbA1c), fasting plasm glucose (FPG), and 2-hour postprandial blood glucose (2hPG). Insulin resistance was estimated by fasting blood insulin (FINS), homeostasis model assessment-insulin resistance (HOMA-IR), and body mass index (BMI). Lipid profiles were also assessed, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), along with inflammation factors such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Serum creatinine (Scr), blood urea nitrogen (BUN), and adverse events were applied to evaluate the safety of berberine. RESULTS: Forty-six trials were assessed. Analysis of berberine applied alone or with standard diabetic therapies versus the control group revealed significant reductions in HbA1c (MD = -0.73; 95% CI (-0.97, -0.51)), FPG (MD = -0.86, 95% CI (-1.10, -0.62)), and 2hPG (MD = -1.26, 95% CI (-1.64, -0.89)). Improved insulin resistance was assessed by lowering FINS (MD = -2.05, 95% CI (-2.62, -1.48)), HOMA-IR (MD = -0.71, 95% CI (-1.03, -0.39)), and BMI (MD = -1.07, 95% CI (-1.76, -0.37)). Lipid metabolisms were also ameliorated via the reduction of TG (MD = -0.5, 95% CI (-0.61, -0.39)), TC (MD = 0.64, 95% CI (-0.78, -0.49)), and LDL (MD = 0.86, 95% CI (-1.06, -0.65)) and the upregulation of HDL (MD = 0.17, 95% CI (0.09, 0.25)). Additionally, berberine improved the inflammation factor. CONCLUSION: There is strong evidence supporting the clinical efficacy and safety of berberine in the treatment of DM, especially as an adjunctive therapy. In the future, this may be used to guide targeted clinical use of berberine and the development of medications seeking to treat patients with T2DM and dyslipidemia.


Asunto(s)
Berberina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Berberina/farmacología , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
J Diabetes Res ; 2021: 1010268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926696

RESUMEN

Diabetic nephropathy (DN) is a progressive microvascular diabetic complication. Growing evidence shows that persistent mitochondrial dysfunction contributes to the progression of renal diseases, including DN, as it alters mitochondrial homeostasis and, in turn, affects normal kidney function. Pharmacological regulation of mitochondrial networking is a promising therapeutic strategy for preventing and restoring renal function in DN. In this review, we have surveyed recent advances in elucidating the mitochondrial networking and signaling pathways in physiological and pathological contexts. Additionally, we have considered the contributions of nontraditional therapy that ameliorate mitochondrial dysfunction and discussed their molecular mechanism, highlighting the potential value of nontraditional therapies, such as herbal medicine and lifestyle interventions, in therapeutic interventions for DN. The generation of new insights using mitochondrial networking will facilitate further investigations on nontraditional therapies for DN.


Asunto(s)
Antioxidantes/uso terapéutico , Nefropatías Diabéticas/terapia , Medicamentos Herbarios Chinos/uso terapéutico , Riñón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Conducta de Reducción del Riesgo , Animales , Antioxidantes/efectos adversos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Medicamentos Herbarios Chinos/efectos adversos , Humanos , Riñón/metabolismo , Riñón/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Resultado del Tratamiento
19.
Front Med (Lausanne) ; 8: 719950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604258

RESUMEN

Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.

20.
Exp Ther Med ; 22(5): 1308, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34630662

RESUMEN

Yiqi Huoxue (YQHX) is widely used in traditional Chinese medical practice due to its reported cardioprotective effects. The aim of the present study was to investigate the mechanism underlying these effects of YQHX via the regulation of the Sigma-1 receptor. The Sigma-1 receptor is a chaperone protein located on the mitochondrion-associated endoplasmic reticulum (ER) membrane. It serves an important role in heart function by regulating intracellular Ca2+ homeostasis and enhancing cellular bioenergetics. In the present study, male Sprague Dawley rats with myocardial infarction (MI)-induced heart failure were used. MI rats were administered different treatments, including normal saline, YQHX and fluvoxamine, an agonist of the Sigma-1 receptor. Following four weeks of treatment, YQHX was revealed to improve heart function and attenuate myocardial hypertrophy in MI rats. Additionally, YQHX increased the ATP content and improved the mitochondrial ultrastructure in the heart tissues of MI rats in comparison with acontrol. Treatment was revealed to attenuate the decreased expression of the Sigma-1 receptor and increase the expression of inositol triphosphate type 2 receptors (IP3R2) in MI rats. By exposing H9c2 cells to angiotensin II (Ang II), YQHX prevented cell hypertrophy and normalized the decreased ATP content. However, these positive effects were partially inhibited when the Sigma-1 receptor was knocked down via small interfering RNA transfection. The results of the present study suggested that the Sigma-1 receptor serves an important role in the cardioprotective efficacy of YQHX by increasing ATP content and attenuating cardiomyocyte hypertrophy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...