Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Ethnopharmacol ; 331: 118293, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705430

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Da-Chai-Hu-Tang (DCHT), a Chinese traditional herbal compound, has been utilized for the treatment of Hepatic diseases in China for over 1800 years. The DCHT formula contains eight herbals: Bupleurum chinense DC. (chaihu), Scutellaria baicalensis Georgi (huangqin), Paeonia lactiflora Pall. (baishao), Pinellia ternata (Thunb.) Makino (banxia), Rheum officinale Baill. (dahuang), Citrus × aurantium L. (zhishi), Zingiber officinale Roscoe (shengjiang), Ziziphus jujuba Mill. (dazao). Clinical studies have demonstrated the effectiveness of DCHT in hepatocellular carcinoma (HCC) and its ability to enhance the immunity of patients with hepatocellular carcinoma. A total of 20 Chinese articles have been published on the use of DCHT in treating HCC. AIM OF THE STUDY: The study aimed to validate the effect of DCHT in HCC cells and to identify related targets (TP53, AKT1, BCL2, STAT3) in treating HCC by DCHT in vitro experiments. MATERIALS AND METHODS: Cell proliferation and migration were investigated in vitro. Flow cytometry analysis was used to evaluate the cell cycle and apoptosis. Apoptotic bodies in HepG2 cells were observed using a confocal microscope. Biochemical detection was employed to analyze LDH release, MDA levels, and SOD levels. Bioinformatics analysis was used to predict core targets between DCHT and HCC, as well as potential signaling pathways. The protein levels of metastasis-associated, apoptosis, and PI3K, AKT, p-AKT, and STAT3 were further determined through Western blotting. RESULTS: Following treatment with DCHT, the inhibition of viability, migration, and G2/M arrest was observed in HepG2 cells. Flow cytometry analysis and Morphological apoptosis studies provided evidence that DCHT could induce apoptosis in HepG2 cells. Biochemical detection revealed that DCHT could increase LDH release and the level of MDA, and inhibit the viability of the SOD. Bioinformatics analysis identified key targets such as TP53, AKT1, BCL2, STAT3. The PI3K/AKT/STAT3 signaling pathway emerged as a critical pathway in the KEGG enrichment analysis. Western blotting results indicated that DCHT could enhance the expression of E-cadherin, p53, and Bax, while reducing the content of N-cadherin, Bcl-2, PI3K, p-AKT, AKT1, and STAT3. CONCLUSIONS: The results proved that DCHT could inhibit the progression and metastasis of HCC by regulating the expression of E-cadherin, N-cadherin, p53, Bax, Bcl-2, PI3K, p-AKT, AKT, and STAT3 through the PI3K/AKT/STAT3 signaling pathway.

2.
Fish Shellfish Immunol ; 147: 109467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423489

RESUMEN

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Perciformes , Animales , Peces , Proteínas de Peces/genética , Hepcidinas/genética , Antibacterianos , Bacterias Gramnegativas , Filogenia , Bacterias Grampositivas , Inmunidad Innata/genética , Péptidos Antimicrobianos
3.
Anal Chim Acta ; 1288: 342149, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220283

RESUMEN

A fundamental understanding of the electroanalytical activity of transition metal sulfide electrocatalysts, especially the origin of the electrocatalytic reactivity on the surface sites of heterostructures with multiple crystalline phases, is essential for the design of low-cost and highly efficient nonprecious metal electrocatalysts for further scientific and technological achievements. Herein, we injected P into NiS and occupied the S sites through a doping strategy. The redistributed electronic structure induced the construction of heterostructures, which significantly improved the structure and chemical state of electrochemically inert NiS. The phase-change mechanism between NiS and NiS2 synergistically catalyzes Pb(II), while the P and S sites jointly lose electrons. Moreover, the constructed heterojunction sensor shows the a sensitivity of 83.43 µA µM-1 to Pb(II) with a theoretical limit of detection of 48 nM, as well as excellent stability, reproducibility, and anti-interference ability. The accurate detection in real water further reveals the potential of this sensor for practical applications. This study provides a guiding strategy for improving electrochemically inert materials to design highly active electrocatalytic interfaces, which has important implications for the development of highly efficient electrode-sensitive materials similar to precious metals to achieve accurate electrical analysis.

4.
Chem Sci ; 14(36): 9678-9688, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736653

RESUMEN

Single-atom catalysts have been extensively utilized for electrocatalysis, in which electronic metal-support interactions are typically employed to stabilize single atoms. However, this neglects the metal-metal interactions of adjacent atoms, which are essential for the fine-tuning of selective sites. Herein, the high-loading of Ir single atoms (Ir SAs) (8.9 wt%) were adjacently accommodated into oxygen vacancy-rich Co3O4 nanosheets (Ir SAs/Co3O4). Electronic perturbations for both Ir single atoms and Co3O4 supports were observed under electronic metal-support and metal-metal interactions, thus generating Ir-O-Co/Ir units. Electrons were transferred from Co and Ir to O atoms, inducing the depletion of 3d/5d states in Co/Ir and the occupation of 2p states in O atoms to stabilize the Ir SAs. Moreover, the O atoms of Ir-O-Ir functioned as the main active sites for the electrocatalysis of As(iii), which reduced the energy barrier for the rate-determining step. This was due to the stronger electronic affinities for intermediates from reduction of As(iii), which were completely distinct from other coordinated O atoms of Co3O4 or IrO2. Consequently, the resultant Ir SAs/Co3O4 exhibited far more robust electrocatalytic activities than IrO2/Co3O4 and Co3O4 in the electrocatalysis of As(iii). Moreover, there was a strong orbital coupling effect between the coordinated O atoms of Ir SAs and the -OH of H3AsO3, thus exhibiting superior selectivity for As(iii) in contrast to other common heavy metal cations. This work offers useful insights into the rational design of intriguing SACs with high selectivity and stability for the electrocatalysis and electrochemical analysis of pollutants on an electronic level.

5.
Expert Rev Vaccines ; 22(1): 704-713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501516

RESUMEN

INTRODUCTION: The global spread of COVID-19 has prompted the development of vaccines. A recombinant adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chinese scientists has been authorized for use as a prime and booster dose in China and several other countries. AREAS COVERED: We searched published articles as of 4 May 2023, on PubMed using keywords related to Adenovirus vector, vaccine, and SARS-CoV-2. We reported the progress and outcomes of Ad5-nCov, including vaccine efficacy, safety, immunogenicity based on pre-clinical trials, clinical trials, and real-world studies for primary and booster doses. EXPERT OPINION: Ad5-nCoV is a significant advancement in Chinese vaccine development technology. Evidence from clinical trials and real-world studies has demonstrated well-tolerated, highly immunogenic, and efficacy of Ad5-nCoV in preventing severe/critical COVID-19. Aerosolized Ad5-nCoV, given via a novel route, could elicit mucosal immunity and improve the vaccine efficacy, enhance the production capacity and availability, and reduce the potential negative impact of preexisting antibodies. However, additional research is necessary to evaluate the long-term safety and immunogenicity of Ad5-nCoV, its efficacy against emerging variants, its effectiveness in a real-world context of hybrid immunity, and its cost-effectiveness, particularly with respect to aerosolized Ad5-nCoV.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , SARS-CoV-2 , Formación de Anticuerpos , Adenoviridae/genética , Anticuerpos Antivirales , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes
6.
Fish Shellfish Immunol ; 140: 108936, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423401

RESUMEN

IFN-γ (interferon gamma) is a critical cytokine in the immune system involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. The IFN-γ function is best described in cell defense against intracellular pathogens in mammals, but IFN-γ cytokine-induced metabolic change and its role in anti-infection remain unknown in teleost fish. In this study, a novel IFN-γ (SsIFN-γ) was identified from black rockfish (Sebastes schlegeli) by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of SsIFN-γ encoded a putative protein of 215 amino acids and shares 60.2%-93.5% overall sequence identities with other teleost IFN-γ. SsIFN-γ was distributed ubiquitously in all the detected tissues and immune cells, which was highly expressed in the spleen, gills, head kidney by quantitative real-time PCR. The mRNA expression of SsIFN-γ was significantly upregulated in the spleen, head kidney, head kidney (HK) macrophages and peripheral blood lymphocytes (PBLs) during pathogen infection. Meanwhile, the recombinant protein (rSsIFN-γ) exhibited an immunomodulatory function to enhance respiratory burst activity and nitric oxide response of HK macrophages. Furthermore, rSsIFN-γ could effectively upregulate the expression of macrophage proinflammatory cytokine, the expression of JAK-STAT signaling pathway related genes and interferon-related downstream genes in the head kidney and spleen. Luciferase assays showed ISRE and GAS activity were obviously enhanced after rSsIFN-γ treatment. These results indicated that SsIFN-γ possessed apparent immunoregulatory properties and played a role in fighting pathogen infection which will be helpful to further understanding of the immunologic mechanism of teleosts IFN-γ in innate immunity.


Asunto(s)
Interferón gamma , Perciformes , Animales , Transducción de Señal , Quinasas Janus/genética , Secuencia de Aminoácidos , Factores de Transcripción STAT/genética , Citocinas/metabolismo , Proteínas Recombinantes/genética , Mamíferos/metabolismo
7.
Zool Res ; 44(3): 505-521, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070575

RESUMEN

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Asunto(s)
Fertilidad , Homeostasis , FN-kappa B , Testículo , FN-kappa B/metabolismo , Fertilidad/genética , Fertilidad/inmunología , Humanos , Masculino , Testículo/inmunología , Testículo/metabolismo , Homeostasis/inmunología , Animales , Ratones , Células HEK293 , Espermatogénesis , Inflamación , Regiones Promotoras Genéticas/genética , Activación Transcripcional , Técnicas de Silenciamiento del Gen
8.
Fish Shellfish Immunol ; 136: 108715, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001746

RESUMEN

As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.


Asunto(s)
Lubina , Infecciones Estafilocócicas , Animales , Lubina/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/farmacología , Proteínas de Peces/metabolismo , Proteolípidos/genética , Péptidos , Antibacterianos
9.
J Hazard Mater ; 442: 130122, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36303353

RESUMEN

Mutual interference issues between heavy metal ions tremendously affect the detection reliability and accuracy in water quality analysis, especially the serious interference of Cu(II) on the detection of As(III) is greatly hard to overcome, which needs to be solved urgently. Herein, iron single-atom catalysts with different coordination structures of FeN2C2 and FeN3P are constructed to selectively catalyze the detection of As(III) in the coexistence of Cu(II). FeN3P achieves a high sensitivity of 3.90 µA ppb-1 toward As(III) in NH4Cl/NH3·H2O electrolyte (pH 8.0), completely avoiding Cu(II)-interference. Moreover, the turnover frequency (TOF) of FeN3P is an order of magnitude higher than that of FeN2C2. X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations demonstrate that an As-O bond of H3AsO3 is broken by the strong affinities between both P and O atoms and Fe and As atoms, and H3AsO3 are preferentially reduced by FeN3P during adsorptive process. Meanwhile, the low reaction energy barrier of the rate-determined step for As(III) reduction over FeN3P also accelerates the deposition of As(III) and enhances its response signals. The free-Cu(II) are difficult to adsorb on FeN3P and do not compete with As(III) for Fe active sites, which contributes to the excellent anti-Cu(II) interference capability.

10.
Ann Transl Med ; 10(14): 785, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35965811

RESUMEN

Background: Complete resection (CR) serves as the standard of surgical treatment for retroperitoneal liposarcoma (RPLS). Unfortunately, even at referral centers, recurrence rates are high, and CR may not address multifocal diseases, which are a common phenomenon in RPLS. We sought to retrospectively compare the clinical outcomes of RPLS patients treated with total (ipsilateral) retroperitoneal lipectomy (TRL) and CR. Because TRL remove potentially multifocal tumors in the fat, patients may have a better prognosis than CR. Methods: Patients with primary/first-recurrent RPLS who had been treated at 5 referral centers were recruited from December 2014 to June 2018. Multivariable Cox regression analyses were conducted to determine the effects of demographic, operative, and clinicopathological variables on the following primary endpoints: local recurrence (LR), local recurrence-free survival (LRFS), and overall survival (OS). Results: A total of 134 patients were enrolled in this retrospective study, 53 of whom underwent TRL, and 81 of whom underwent CR. The 2 groups were comparable in terms of age, gender, presentation (primary vs. first-recurrent RPLS), number of tumors (unifocal vs. multifocal) at presentation, and Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC) grade. The TRL group had higher levels of preoperative hemoglobin (Hb) (13 vs. 12.5 g/dL; P=0.008) and a lower amount of intraoperative blood loss (400 vs. 500 mL; P=0.034), but there were no significant differences in the length of hospital stay (23 vs. 22 d; P=0.47) or complications (32 vs. 30; P=0.82) between the 2 groups. In a subset of patients with multifocal tumors at initial presentation, OS was more prolonged in those treated with TRL than those treated with CR (P=0.0272). Based on the multivariable analysis, primary liposarcoma and a low FNCLCC grade were associated with decreased LR and improved OS. Conclusions: TRL is a safe procedure that positively affects the OS of patients with multifocal RPLS. This novel strategy deserves further investigation in prospective studies.

11.
Oncol Nurs Forum ; 49(4): 369-384, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35788740

RESUMEN

PROBLEM IDENTIFICATION: There is a lack of guideline recommendations about the use of scalp cooling for preventing chemotherapy-induced alopecia (CIA). This overview was conducted to summarize effectiveness, safety, and tolerance of scalp cooling for CIA based on systematic reviews. LITERATURE SEARCH: PubMed®, Embase®, Cochrane Library, and CNKI were searched from inception to May 15, 2021. DATA EVALUATION: AMSTAR 2 was used to assess the methodologic quality. Qualitative and quantitative synthesis methods were used to identify the effectiveness, safety, and tolerance of scalp cooling. SYNTHESIS: 14 systematic reviews were identified, and the quality assessment was poor. Scalp cooling has been considered to be effective for preventing chemotherapy-induced alopecia and has been confirmed in patients with breast cancer and other solid tumors. Most adverse effects were mild and moderate, and scalp cooling did not increase the risk of scalp metastases. IMPLICATIONS FOR RESEARCH: This overview could guide nurses to provide access to scalp cooling to reduce the risk of severe or total chemotherapy-induced alopecia for patients undergoing chemotherapy. The large-scale application of scalp cooling may be promoted by establishing reimbursement mechanisms and increasing available devices in the future.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Alopecia/inducido químicamente , Alopecia/tratamiento farmacológico , Alopecia/prevención & control , Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Cuero Cabelludo/patología
12.
BMC Surg ; 22(1): 228, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35701785

RESUMEN

OBJECTIVE: To analyze the clinicopathological characteristics of patients with papillary thyroid carcinoma (PTC) and its influence on the distribution of lymph node metastasis at each lateral level of the neck to guide precise treatment of the lateral area. METHODS: The clinicopathological data of patients with PTC initially diagnosed and treated at our hospital from February 2014 to September 2021 were collected; the metastatic status of each lateral level was recorded, and correlations were analyzed. RESULTS: A total of 203 patients were enrolled in this study. There were 67 males and 136 females, with an average age of 41.1 years. In the lateral cervical area, lymph node metastasis was found at level IIa in 81 patients (39.9%); level III, 171 patients (84.2%); level IV, 122 patients (60%); and level Vb, 18 patients (8.9%). Correlation analysis showed that age (r = 0.198, P < 0.01) and sex (r = 0.196, P < 0.01) were weakly correlated with the number of positive lymph nodes in the central region. The tumor size (r = 0.164, P < 0.05) was weakly correlated with lymph node metastasis at level IV. The presence of multiple tumor foci was weakly correlated with lymph node metastasis at level IIa (r = 0.163, P < 0.05) and Vb (r = 0.143, P < 0.05). The tumor location (r = - 0.168, P < 0.05) was weakly correlated with lymph node metastasis at level III. The number of positive lymph nodes in the central region (r = 0.189, P < 0.01) was weakly correlated with lymph node metastasis at level IV. Binary logistic regression analysis showed that the risk of metastasis of multifocal tumors was higher than that of unifocal tumors by 1.958 times at level IIa (P = 0.021, OR = 1.958) and 2.929 times at level Vb (P = 0.049, OR = 2.929). The higher the tumor was located, the higher the risk of metastasis at level III (P = 0.014, OR = 0.563). Every additional positive lymph node in the central region increased the risk of metastasis at level IV by 1.126 times (P = 0.009, OR = 1.126). CONCLUSIONS: For patients with pathological evidence of lateral metastasis, standard dissection of level IIa through Vb is recommended; selective dissection requires careful consideration. Patients with multifocal tumors have a high risk of metastasis at levels IIa and Vb, which requires special attention during the operation.


Asunto(s)
Carcinoma Papilar , Carcinoma , Neoplasias de la Tiroides , Adulto , Carcinoma/patología , Carcinoma/cirugía , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Femenino , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática , Masculino , Disección del Cuello , Estudios Retrospectivos , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Tiroidectomía
13.
J Hazard Mater ; 435: 129009, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500344

RESUMEN

Constructing catalysts with simple structures, uniform effective sites, and excellent performance is crucial for understanding the reaction mechanism of target pollutants. Herein, the single-atom catalyst of Mn-intercalated graphitic carbon nitride (Mn/g-C3N4) was prepared. It was found that the intercalated Mn atoms acted as strong electron donors to effectively tune the electronic structure distribution of the in-situ N atoms, providing a large number of negative potential atomic-scale sites for catalytic reactions. In the detection, the in-situ N atom established an electron bridge for the transient electrostatic trapping of free Pb(II), which induced Pb-N-Mn coordination bonding. Even in g-C3N4-loaded Mn nanoparticles, the N atom was again confirmed to be the interaction site for coupling with Pb. And the MnII-N4-C/MnIV-N4-C cycle actively participated in the electrocatalysis of Pb(II) was confirmed. Moreover, Mn/g-C3N4 achieved highly stable and accurate detection for Pb(II) with a sensitivity of 2714.47 µA·µM-1·cm-2. And excellent reproducibility and specific detection of real water samples made the electrode practical. This study contributes to understanding the changes in the electronic structure of chemically inert substrates after single-atom intercalation and the interaction between contaminants and the microstructure of sensitive materials, providing a guiding strategy for designing highly active electrocatalytic interfaces for accurate electroanalysis.

14.
Fish Shellfish Immunol ; 123: 369-380, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35318137

RESUMEN

Natural killer lysin (NK-lysin) is a small molecule antimicrobial peptide secreted by natural killer cells and T lymphocytes. In this study, we characterized a cDNA sequence encoding an NK-lysin homologue (SsNKL1) from black rockfish, Sebastes schlegelii. The open reading frame (ORF) of SsNKL1 encodes a putative protein of 149 amino acids and shares 44%-87% overall sequence identities with other teleost NK-lysins. SsNKL1 possesses conserved NK-lysin family features, including a signal sequence and a surfactant-associated protein B (SapB) domain, sequence analysis revealed that SsNKL1 is most closely related to false kelpfish (Sebastiscus marmoratus) NK-lysin (with 87% sequence identity). SsNKL1 transcripts were detected in all the tested tissues, with the highest level in the kidney, followed by the spleen and gills. Upon Listonella anguillarum infection, the mRNA expression of SsNKL1 in the black rockfish was significantly up-regulated in the liver and kidney. The derived peptide SsNKLP27 from SsNKL1 was synthesized, and its biological function was studied. SsNKLP27 showed direct antibacterial activity against Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Bacillus subtilis, L. anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus. SsNKLP27 treatment facilitated the bactericidal process of erythromycin by enhancing the permeability of the outer membrane. In the process of interaction with the target bacterial cells, SsNKLP27 changed the permeability and retained the morphological integrity of the cell membrane, then penetrated into the cytoplasm, and induced the degradation of genomic DNA and total RNA. In vivo studies showed that administration of SsNKLP27 before bacterial and viral infection significantly reduced the transmission and replication of pathogens in tissues. In vitro analysis showed that SsNKLP27 could enhance the respiratory burst ability and regulate the expression of some immune-related genes of macrophages. In summary, these results provided new insights into the function of NK-lysins in teleost fish and support that SsNKLP27 is a new broad-spectrum antimicrobial peptide that has a potential application prospect in aquaculture against pathogenic infection.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Perciformes , Vibriosis , Secuencia de Aminoácidos , Animales , Antibacterianos , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Células Asesinas Naturales , Péptidos , Perciformes/metabolismo , Proteolípidos/química , Proteolípidos/genética , Vibriosis/genética , Vibriosis/veterinaria
15.
Anal Chim Acta ; 1200: 339607, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35256149

RESUMEN

Constructing a highly sensitive and selective electrochemical interface is of great significance for the effective detection of Hg2+ in water and biological samples. Herein, Co3O4 nanopolyhedron (NP) anchored on nitrogen-doped reduced graphene oxide (N-RGO) is utilized as the electrode material for the detection of Hg2+ in the range of 0.1 µM-1.0 µM, with high sensitivity (1899.70 µA µM-1 cm-2) and low detection limits (0.03 µM) in natural water. Moreover, the Co3O4-NP/N-RGO modified electrode possesses reasonable anti-interference ability for Hg2+ in the presence of inorganic ions and glucose, which is the basis of its good response to trace Hg2+ in serum. Besides, combined with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations, the electron transfer tendency is revealed. Additionally, combined with the electron state density of Co-p, it is speculated that Co3+ is an optimum active site for catalytic reaction. The above results elucidate an electrochemically sensitive interface is constructed to realize the efficient detection of Hg2+, which provides some theoretical guidance for the development of electrochemical sensors.


Asunto(s)
Grafito , Mercurio , Cobalto , Técnicas Electroquímicas/métodos , Grafito/química , Óxidos
16.
Appl Opt ; 61(1): 262-272, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200827

RESUMEN

Ultraviolet (UV) spectroscopy is widely applied in real-time environmental monitoring, especially in diesel vehicle nitrogen monoxide (NO) emissions. However, in field experiments, UV absorption spectrum may exist for different degrees of drifts. Spectral jitters may exist for various reasons such as optical power variation, electrical signal drift, and the refractive index jitters of the optical path for an extended period of time, which causes the detection system to be calibrated. And the pulse xenon lamps as the UV source are characterized by specific emission lines that interfere in spectral analysis directly. For these problems, we proposed the spectral structure matching method based on principal component analysis (PCA), which was compared with the conventional polynomial fitting method to observe feasibility and variability. Further, the UV derivative spectrum was applied to the system appropriately, due to the variation of the absorption peak, and was only related to the target gas by using the above method. We validated our method experimentally by performing the NO UV detection system with the calibration and the comparison test. The results suggested that the calibration relative error was less than 9% and the measurement relative error was less than 6% for this wide range by the proposed processes, which optimized the interference of spectral structures and fluctuation to the system and therefore provided better monitoring. This study may provide an alternative spectral analysis method that is unaffected on the specific emission lines of lamps and is not limited to the spectral region and the target gas.

17.
Chem Commun (Camb) ; 57(11): 1324-1327, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33427247

RESUMEN

A novel zero-valent iron nanomaterial (Fe0@Fe2MnO4) was synthesized and achieved an ultrasensitive electrochemical detection of As(iii). It was found that the enhanced sensitivity is attributed to the surficial catalytic redox couple Fe(ii)/Fe(iii) induced by Fe0 of Fe0@Fe2MnO4. Besides, the catalytic kinetics was modelled and simulated, and the strong influence of the oxidation potential of the catalytic redox species on sensitivity was revealed. By tailoring the surficial atomic and electronic structures of the material, the redox potential can be altered, which can be used for controlling the electro-sensitivity and selectivity in electroanalysis.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118511, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32480275

RESUMEN

Phenol, o-cresol, p-cresol, catechol and resorcinol are five phenolic compounds with extremely similar structure. Their fluorescence spectra are hard to be analyzed because of the serious spectral overlaps between any two of the five phenolic components in the mixture system. In this experiment, multi-dimensional partial least-squares (N-PLS), unfolded partial least-squares (U-PLS) with residual bilinearization (RBL) and parallel factor analysis (PARAFAC) are employed to analyze the three-way fluorescence spectra aiming to achieve quantitative results. Meanwhile, a contrast of these three methods is given. The experiment results show that N-PLS/RBL and U-PLS/RBL algorithms are superior to PARARFAC in terms of analysis of highly overlapping three-way fluorescence spectra for concentration determination.

19.
Small ; 16(25): e2001035, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32406188

RESUMEN

Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.

20.
Small ; 16(7): e1906830, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31971669

RESUMEN

Metal hydroxide nanomaterials are widely applied in the energy and environment fields. The electrochemical performance of such materials is strongly dependent on their crystal phases. However, as there are always multiple factors relating to the phase-dependent electrochemistry, it is still difficult to identify the determining one. The well-defined crystal phases of α- and ß-FeOOH nanorods are characterized through the transmission electron microscopy by a series of rotation toward one rod, where the cross-section shape and the growth direction along the [001] crystalline are first verified for 1D FeOOH nanostructures. The electrosensitivity of the two materials toward Pb(II) is tested, where α-FeOOH performs an outstanding sensitivity whilst it is only modest for ß-FeOOH. Experiments via Fourier transform infrared spectroscopy, X-ray absorption fine structure (XAFS), etc., show that α-FeOOH presents a larger Pb(II) adsorption capacity due to more surficial hydroxyl groups and weaker PbO bond strength. The reaction kinetics are simulated and the adsorption capacity is found to be the determining factor for the distinct Pb(II) sensitivities. Combining experiment with simulation, this work reveals the physical insights of the phase-dependent electrochemistry for FeOOH and provides guidelines for the functional application of metal hydroxide nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...