Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 256: 121582, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608621

RESUMEN

Ion-adsorption rare earth element (REE) deposits distributed in the subtropics provide a rich global source of REEs, but in situ injection of REEs extractant into the mine can result in leachate being leaked into the surrounding groundwater systems. Due to the lack of understanding of REE speciation distribution, particularly colloidal characteristics in a mining area, the risks of REEs migration caused by in situ leaching of ion-adsorption REE deposits has not been concerned. Here, ultrafiltration and asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (AF4-ICP-MS) were integrated to characterize the size and composition of REEs in leachate and groundwater from mining catchments in South China. Results show that REEs were associated with four fractions: 1) the <1 kDa fraction including dissolved REEs; 2) the 1 - 100 kDa nano-colloidal fraction containing organic compounds; 3) the 100 kDa - 220 nm fine colloids including organic-mineral (Fe, Mn and Al (oxy)hydroxides and clay minerals); 4) the >220 nm coarse colloids and acid soluble particles (ASPs) comprising minerals. Influenced by the ion exchange effect of in situ leaching, REEs in leachate were mostly dissolved (79 %). The pH of the groundwater far from the mine site was increased (5.8 - 7.3), the fine organic-mineral colloids (46 % - 80 %) were the main vectors of transport for REEs. Further analysis by AF4 revealed that the fine colloids can be divided into mineral-rich (F1, 100 kDa - 120 nm) and organic matter-rich (F2, 120 - 220 nm) populations. The main colloids associated with REEs shifted from F1 (64 % ∼ 76 %) to F2 (50 % ∼ 52 %) away from the mining area. For F1 and F2, the metal/C molar ratio decreased away from the mining area and middle to heavy REE enrichment was presented. According to the REE fractionation, organic matter was the predominant component capable of binding REEs in fine colloids. Overall, our results indicate that REEs in the groundwater system shifted from the dissolved to the colloidal phase in a catchment affected by in situ leaching, and organic-mineral colloids play an important role in facilitating the migration of REEs.


Asunto(s)
Coloides , Agua Subterránea , Metales de Tierras Raras , Minerales , Minería , Contaminantes Químicos del Agua , Agua Subterránea/química , Coloides/química , China , Minerales/química , Adsorción
2.
Metallomics ; 15(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37591604

RESUMEN

Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.


Asunto(s)
Cerio , Sincrotrones , Rayos X , Lantano , Microscopía Fluorescente
3.
Environ Int ; 175: 107939, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37137179

RESUMEN

Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O2 and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake. Here, we investigated the effects on Cr(VI) generation and the subsequent Cr uptake and accumulation with the involvement of two rice cultivars with distinct ROL capacities by increasing soil Mn abundance. Results showed that Mn(II) addition to the soil led to more Cr(III) being released into the pore water, and the dissolved Cr(III) was oxidized to Cr(VI) by ROL and biogenic Mn(III/IV) oxides. The concentration of Cr(VI) in soil and pore water increased linearly with the addition of Mn(II) doses. Mn(II) addition promoted the root-to-shoot translocation and grain accumulation of Cr derived mainly from newly generated Cr(VI) in the soil. These results emphasize that rice ROL and MOM promote the oxidative dissolution of Cr(III) at a high level of soil Mn, resulting in more Cr accumulation in rice grains and increasing dietary Cr exposure risks.


Asunto(s)
Cromo , Oryza , Contaminantes del Suelo , Cromo/química , Oxidación-Reducción , Óxidos/química , Suelo/química , Contaminantes del Suelo/análisis , Solubilidad , Agua
4.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071813

RESUMEN

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Asunto(s)
Helechos , Proteínas de Transporte de Membrana , Metales de Tierras Raras , Membrana Celular , Helechos/metabolismo , Zinc/metabolismo
5.
J Hazard Mater ; 452: 131254, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965356

RESUMEN

Dicranopteris linearis is the best-known hyperaccumulator species of rare earth elements (REEs) and silicon (Si), capable of dealing with toxic level of REEs. Hence, this study aimed to clarify how D. linearis leaves cope with excessive REE stress, and whether Si plays a role in REE detoxification. The results show that lanthanum (La - as a representative of the REEs) stress led to decreased biomass and an increase of metabolism related to leaf cell wall synthesis and modification. However, the La stress-induced responses, especially the increase of pectin-related gene expression level, pectin polysaccharides concentration, and methylesterase activity, could be mitigated by Si supply. Approximately 70% of the Si in D. linearis leaves interacted with the cell walls to form organosilicon Si-O-C linkages. The Si-modified cell walls contained more hydroxyl groups, leading to a more efficient REE retention compared to the Si-free ones. Moreover, this [Si-cell wall] matrix increased the pectin-La accumulation capacity by 64%, with no effect on hemicellulose-La and cellulose-La accumulation capacity. These results suggest that [Si-pectin] matrix fixation is key in REE detoxification in D. linearis, laying the foundation for the development of phytotechnological applications (e.g., REE phytomining) using this species in REE-contaminated sites.


Asunto(s)
Metales de Tierras Raras , Tracheophyta , Silicio , Pectinas , Lantano
6.
J Hazard Mater ; 443(Pt A): 130241, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36308929

RESUMEN

Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , China
7.
J Hazard Mater ; 443(Pt B): 130253, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36327843

RESUMEN

The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.


Asunto(s)
Metales de Tierras Raras , Tracheophyta , Metales de Tierras Raras/química , Agua
8.
Water Res ; 225: 119172, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191530

RESUMEN

Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.


Asunto(s)
Metales de Tierras Raras , Microbiota , ARN Ribosómico 16S/genética , Metales de Tierras Raras/análisis , Minería , Archaea/genética , China
9.
J Hazard Mater ; 435: 128959, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483265

RESUMEN

In situ leaching of ion-adsorption rare earth element (REE) deposits has released large amounts of REE-containing wastewater. However, the origin, speciation, distribution and migration of REEs in aqueous systems of the mining catchment are poorly understood. Groundwater, surface water, in situ leachates and weathered granite soil samples were collected from a catchment affected by mining activities in South China. The REE concentrations in groundwater (6.18 × 10-3-0.49 µmol L-1) and surface water (2.54-44.05 µmol L-1) decreased from upstream to downstream. REEs in groundwater were detected in organic matter associated (FA-REE) colloids, while the REE3+ and REE(SO4)+ were converted to REE(CO3)+ and FA-REE colloids from leachates and upstream surface water to downstream. The REE patterns of leachates and upstream groundwater (light and middle REE enrichment) resembled those of soil, but showed heavy REE enrichment due to FA-REE colloids in the downstream. REE in surface water were derived from middle REE enriched leachate. The Ce and Eu anomalies in the water samples indicated the REE origin (i.e., mining activities) and the hydrological variations (e.g., oxidation environment and water-rock interaction). Our results reveal the origin and fate of REE in aqueous systems of ion-adsorption REE mining catchments.


Asunto(s)
Monitoreo del Ambiente , Metales de Tierras Raras , China , Monitoreo del Ambiente/métodos , Minería , Suelo , Agua
10.
Sci Total Environ ; 828: 154361, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288140

RESUMEN

The exploitation of ion-adsorption rare earth element (REE) deposits has resulted in large quantities of abandoned mine tailings, which pose significant risks to the surrounding environment. However, the natural evolutional patterns at early successional stages and related biogeochemical dynamics (e.g. nutrient and REE cycling) on such mine tailings remains poorly understood. To this end, a chronosequence of REE mine tailings abandoned for up to 15 years was investigated in a post-mining site in south China. Our results showed that biocrusts were the earliest colonizers on these tailings, reaching a peak of 10% of surface coverage after 10 years of abandonment. Later on, after 15 years, the biocrusts began to be replaced by pioneer plants (e.g. Miscanthus sinensis), suggesting a rather rapid succession. This ecological succession was accompanied by obvious changes in soil nutrients and microbial community structure. Compared to bulk soils, both the biocrusts and rhizospheric soils favored an accumulation of nutrients (e.g. P, S, N, C). Notably, the autotrophic bacteria (e.g. Chloroflexi and Cyanobacteria) with C and N fixation abilities were preferentially enriched in biocrusts, while heterotrophic plant growth promoting bacteria (e.g. Pseudoocardiaceae and Acidobacteriales) were mainly present in the rhizosphere. Moreover, the biocrusts showed a remarkably high concentration of REEs (up to 1820 mg kg-1), while the rhizospheric soils tended to decrease REE concentrations (~400 mg kg-1) in comparison with bulk soils, indicating that the REEs could be redistributed by biological processes. Principal component analysis and mantel tests showed that the concentrations of nutrients and REEs were the most important factors affecting the microbial communities in biocrusts, rhizospheric and bulk soils. In sum, based on the observation of nutrient accumulation and pollutant (i.e. REE) dynamics in the initial successional stages, this work provides a feasible theoretical basis for future restoration practices on REE mine tailings.


Asunto(s)
Metales de Tierras Raras , Contaminantes del Suelo , Metales de Tierras Raras/análisis , Minería , Nutrientes/análisis , Plantas , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
11.
Environ Microbiol ; 24(2): 919-937, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33848048

RESUMEN

Acid mine drainage (AMD) generated by rare earth elements (REEs) deposits exploration contains high concentrations of REEs, ammonium and sulfates, which is quite different from typical metallic AMD. Currently, microbial responses and ecological functions in REEs-AMD impacted rivers are unknown. Here, 16S rRNA analysis and genome-resolved metagenomics were performed on microbial community collected from a REEs-AMD contaminated river. The results showed that REEs-AMD significantly changed river microbial diversity and shaped unique indicator species (e.g. Thaumarchaeota, Methylophilales, Rhodospirillales and Burkholderiales). The main environmental factors regulating community were pH, ammonium and REEs, among which high concentration of REEs increased REEs-dependent enzyme-encoding genes (XoxF and ExaF/PedH). Additionally, we reconstructed 566 metagenome-assembled genomes covering 70.4% of identifying indicators. Genome-centric analysis revealed that the abundant archaea Thaumarchaeota and Xanthomonadaceae were often involved in nitrification and denitrification, while family Burkholderiaceae were capable of sulfide oxidation coupled with dissimilatory nitrate reduction to ammonium. These indicators play crucial roles in nitrogen and sulfur cycling as well as REEs immobilization in REEs-AMD contaminated rivers. This study confirmed the potential dual effect of REEs on microbial community at the functional gene level. Our investigation on the ecological roles of indicators further provided new insights for the development of REEs-AMD bioremediation.


Asunto(s)
Metales de Tierras Raras , Microbiota , Minería , ARN Ribosómico 16S/genética , Ríos
12.
Sci Total Environ ; 805: 150335, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818777

RESUMEN

Organic acids play an important role in metal tolerance, uptake, and translocation in hyperaccumulators. Phytolacca americana is a rare earth element (REE) hyperaccumulator, but the underlying mechanisms on REE tolerance and accumulation mediated by organic acids are poorly understood. Here, we reported for the first time the strategy of P. americana to enhance REE tolerance and accumulation through organic acids from root external secretion to internal biosynthesis. Different from the exclusion of heavy metal by organic acid in the typical plants, the results showed that oxalate secretion (0.3-0.6 µmol h-1 g-1 root DW) induced by yttrium (Y) could not prevent Y from entering the roots, resulting in excess Y uptake by P. americana. Yttrium stress also stimulated the accumulation of malate and citrate by 1.4- and 2.0-folds in the root cortex. Exogenous malate and citrate promoted the redistribution of Y from the root cell walls to the shoot by 30% and 21%, respectively. Based on comparative transcriptome analysis, 6-fold up-regulation was observed in PaNIP1;2, whose homology AtNIP1;2 is responsible for the transport of Al-malate in Arabidopsis. These results suggested that the promoted formation of Y-malate complexes within the roots potentially accelerated the transport of Y from P. americana roots to shoots through PaNIP1;2. Our study revealed the potential mechanism of organic acids in the external exclusion and internal detoxification and translocation of REE in P. americana roots, which provided a basis for improving the efficiency of REE phytoextraction.


Asunto(s)
Arabidopsis , Metales de Tierras Raras , Phytolacca americana , Compuestos Orgánicos , Raíces de Plantas
13.
Sci Total Environ ; 809: 152075, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34890651

RESUMEN

The exploitation of ion-adsorption rare earth element (REE) deposits in South China has left large areas of mine tailings. However, limited remediation practices on these tailings have been reported, and how the remediation strategies and economic plants cultivation affect the biogeochemical cycles of nutrients, REEs and Al remains unclear. The aim of the present study was to investigate the effects of the combination of the addition of soil amendment and the root development and activity of a fiber plant ramie (Boehmeria nivea L.) on the availability and distribution of nutrients, as well as of REEs and other potentially toxic elements (e.g. Al) in the soil-plant system. The results showed that the application of organic amendment and ramie planting induced a significant increase in soil pH, total carbon (C), nitrogen (N), and other nutrient (e.g. P and Ca) concentrations, while led to a decrease of 80-90% and 60-90% in soil extractable REE and Al concentrations respectively. Matrices of correlation showed that soil pH, total C, N, and P concentrations were among the most important factors controlling the availability of soil REEs and Al, and root characteristics (e.g. fine root length). The total C, N, P and extractable nutrient concentrations, and electrical conductivity were higher in the rhizosphere soils of ramie than those in the bulk soils. Moreover, more than 60% of the quantity of REE and Al in the whole ramie plant was stored within the thick roots. These results showed that, in addition to amendment, the effects induced by the roots of ramie could further improve soil properties through C input, nutrient mobilization and toxic element stabilization. Our study concludes that ramie planting with organic amendment is a promising phytostabilization strategy for the remediation of REE mine tailings in South China.


Asunto(s)
Boehmeria , Contaminantes del Suelo , Adsorción , Nutrientes , Suelo , Contaminantes del Suelo/análisis
14.
Chemosphere ; 282: 131096, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34470158

RESUMEN

The plant Phytolacca americana L. simultaneously hyperaccumulates manganese (Mn) and rare earth elements (REEs), but the underlying mechanisms are largely unknown. In this study, P. americana and the corresponding rhizosphere soil samples were collected from an ion-adsorption REE mine area in China, and the elemental composition and soil properties were analyzed in order to explore the relationship between metal accumulation and soil properties. The results show that P. americana accumulates high concentrations of REEs (up to 1040 mg kg-1), Mn (up to 10400 mg kg-1) and aluminum (Al) (up to 5960 mg kg-1) in leaves. The REE concentrations in leaves were positively correlated with those of Al, Fe and Zn, while light REE concentrations were negatively correlated with P concentrations (p < 0.05). The soil properties explained 81.7%, 72.9% and 67.1% of REEs, Mn and Al accumulated in P. americana, respectively. The variation of REE accumulation in P. americana was primarily explained by plant available P (24.4%), pH (12.9%), TOC (9.4%) and total P (7.7%). The accumulation of Mn was primarily explained by plant available REEs (42.9%) and available Al (13.1%) while Al in P. americana was primarily explained by soil pH (14.4%). This study suggests the potential by regulation of soil properties in improving the efficiency of phytoextraction for REEs by hyperaccumulators.


Asunto(s)
Metales de Tierras Raras , Phytolacca americana , Contaminantes del Suelo , Aluminio , Biodegradación Ambiental , Manganeso , Raíces de Plantas , Suelo
15.
Water Res ; 201: 117331, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153824

RESUMEN

Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.


Asunto(s)
Archaea , Microbiota , Archaea/genética , China , Genoma Arqueal , Metagenoma , Filogenia , ARN Ribosómico 16S
16.
Ann Bot ; 128(1): 17-30, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33615337

RESUMEN

BACKGROUND: The fern Dicranopteris linearis is a hyperaccumulator of rare earth elements (REEs), aluminium (Al) and silicon (Si). However, the physiological mechanisms of tissue-level tolerance of high concentrations of REE and Al, and possible interactions with Si, are currently incompletely known. METHODS: A particle-induced X-ray emission (µPIXE) microprobe with the Maia detector, scanning electron microscopy with energy-dispersive spectroscopy and chemical speciation modelling were used to decipher the localization and biochemistry of REEs, Al and Si in D. linearis during uptake, translocation and sequestration processes. RESULTS: In the roots >80 % of REEs and Al were in apoplastic fractions, among which the REEs were most significantly co-localized with Si and phosphorus (P) in the epidermis. In the xylem sap, REEs were nearly 100 % present as REEH3SiO42+, without significant differences between the REEs, while 24-45 % of Al was present as Al-citrate and only 1.7-16 % Al was present as AlH3SiO42+. In the pinnules, REEs were mainly concentrated in necrotic lesions and in the epidermis, and REEs and Al were possibly co-deposited within phytoliths (SiO2). Different REEs had similar spatial localizations in the epidermis and exodermis of roots, the necrosis, veins and epidermis of pinnae of D. linearis. CONCLUSIONS: We posit that Si plays a critical role in REE and Al tolerance within the root apoplast, transport within the vascular bundle and sequestration within the blade of D. linearis.


Asunto(s)
Helechos , Metales de Tierras Raras , Aluminio , Humanos , Silicio , Dióxido de Silicio
17.
Front Microbiol ; 12: 751794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087482

RESUMEN

Much effort has been made to remediate the degraded mine lands that bring severe impacts to the natural environments. However, it remains unclear what drives the recovery of biodiversity and ecosystem functions, making the restoration of these fragile ecosystems a big challenge. The interactions among plant species, soil communities, and abiotic conditions, i.e., plant-soil feedbacks (PSFs), significantly influence vegetation development, plant community structure, and ultimately regulate the recovery of ecosystem multi-functionality. Here, we present a conceptual framework concerning PSFs patterns and potential mechanisms in degraded mine lands. Different from healthy ecosystems, mine lands are generally featured with harsh physical and chemical properties, which may have different PSFs and should be considered during the restoration. Usually, pioneer plants colonized in the mine lands can adapt to the stressful environment by forming tolerant functional traits and gathering specific soil microbial communities. Understanding the mechanisms of PSFs would enhance our ability to predict and alter both the composition of above- and below-ground communities, and improve the recovery of ecosystem functions in degraded mine lands. Finally, we put forward some challenges of the current PSFs study and discuss avenues for further research in the ecological restoration of degraded mine lands.

18.
Environ Sci Technol ; 54(4): 2287-2294, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31951400

RESUMEN

The fern Dicranopteris linearis (Gleicheniaceae) from China is a hyperaccumulator of rare earth element (REE), but little is known about the ecophysiology of REE in this species. This study aimed to clarify tissue-level and organ-level distribution of REEs via synchrotron-based X-ray fluorescence microscopy (XFM). The results show that REEs (La + Ce) are mainly colocalized with Mn in the pinnae and pinnules, with the highest concentrations in necrotic lesions and lower concentrations in veins. In the cross sections of the pinnules, midveins, rachis, and stolons, La + Ce and Mn are enriched in the epidermis, vascular bundles, and pericycle (midvein). In these tissues, Mn is localized mainly in the cortex and mesophyll. We hypothesize that the movement of REEs in the transpiration flow in the veins is initially restricted in the veins by the pericycle between vascular bundle and cortex, while excess REEs are transported by evaporation and cocompartmentalized with Mn in the necrotic lesions and epidermis in an immobile form, possibly a Si-coprecipitate. The results presented here provide insights on how D. linearis regulates high concentrations of REEs in vivo, and this knowledge is useful for developing phytotechnological applications (such as REE agromining) using this fern in REE-contaminated sites in China.


Asunto(s)
Cerio , Helechos , Metales de Tierras Raras , China , Lantano
19.
Bull Environ Contam Toxicol ; 103(4): 565-570, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31410500

RESUMEN

Nowadays rare earth elements (REEs) are widely applied in high-technology and clean energy products, but their environmental risks are still largely unknown. To estimate the ecological risk of REEs, soil samples were collected from REE mine tailings with and without phytoremediation. The results showed that the tailings had rather low organic matter and high total REE concentrations, up to 808.5 mg/kg. The 10% effective concentration (EC10) of neodymium (Nd) and yttrium (Y) were calculated based on the toxicity tests of seed germination and root growth. For both wheat and mung bean, the EC10 of Nd and Y in soils were in the range of 1053.1-1300.1 mg/kg. The average hazard quotient of mine tailing soil without phytoremediation was higher than that with phytoremediation. All the hazard quotient of Nd and Y were less than 1, indicating that Nd or Y alone was unlikely to cause adverse ecological effects. Given to the coexistence of REEs on mine sites, the ecological risk of REE mixture could be potentially high towards local soil environments, even for soils with phytoremdiation.


Asunto(s)
Minería , Neodimio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Itrio/análisis , Biodegradación Ambiental , China , Medición de Riesgo , Triticum/química , Triticum/crecimiento & desarrollo , Vigna/química , Vigna/crecimiento & desarrollo
20.
Sci Total Environ ; 660: 697-704, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743955

RESUMEN

Rare-earth elements (REEs) are known to be a group of emerging pollutants, but the geochemistry of REEs in river waters in ion-adsorption rare-earth mining areas has attracted little attention. In this study, samples of the <0.45 µm and 0.22-0.45 µm (large colloids) water fractions and acid-soluble particles (ASPs) were collected from a river impacted by ion-adsorption rare-earth mining activities. The roles of ligand complexation, colloid binding, and particle adsorption in REE transport and distribution were also investigated. Results showed higher concentrations of REEs in the <0.45 µm fraction of all sampling sites (3.30 × 10-2-9.42 µM) compared with that in the control site (1.21 × 10-3 µM); this fraction was also characterized by middle REE enrichment at upstream sites, where REEs are mainly controlled by the <0.22 µm fraction (55%-94% of the species found in the <0.45 µm fraction) and ligand complexation (REE3+, REE(SO4)+, and REE(CO3)+). At downstream sites, heavy REE enrichment was observed, which was largely determined by binding to large colloids (68%-83% of the species found in the <0.45 µm fraction) and adsorption to particles (>90% of the acidified bulk water). Furthermore, REE patterns indicated that the REE-associated large colloids were mineral or mixed mineral-organic matter (OM) at upstream sites and OM-dominated or functionalized at downstream sites. The particles were mainly coated by inorganic matter substances (e.g., Fe/Al oxyhydroxides). In summary, our results reveal that REE patterns provide a useful tool to study the fate of REEs in ion-adsorption rare-earth mining catchments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...