Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(6): 060201, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178451

RESUMEN

Bell's theorem states that the quantum mechanical description of physical quantities cannot be fully explained by local realistic theories, laying a solid basis for various quantum information applications. Hardy's paradox is celebrated as the simplest form of Bell's theorem concerning its "All versus Nothing" approach to test local realism. However, due to experimental imperfections, existing tests of Hardy's paradox require additional assumptions of the experimental systems, and these assumptions constitute potential loopholes for faithfully testing local realistic theories. Here, we experimentally demonstrate Hardy's nonlocality through a photonic entanglement source. By achieving a detection efficiency of 82.2%, a quantum state fidelity of 99.10%, and applying high-speed quantum random number generators for the measurement setting switching, the experiment is implemented in a loophole-free manner. During 6 h of running, a strong violation of P_{Hardy}=4.646×10^{-4} up to 5 standard deviations is observed with 4.32×10^{9} trials. A null hypothesis test shows that the results can be explained by local realistic theories with an upper bound probability of 10^{-16348}. These testing results provide affirmative evidence against local realism, and establish an advancing benchmark for quantum information applications based on Hardy's paradox.

2.
J Cell Commun Signal ; 18(2): e12030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946726

RESUMEN

The aim of this study is to investigate the effects of POSTN on IL-1ß induced inflammation, apoptosis, NF-κB pathway and intervertebral disc degeneration (IVDD) in Nucleus pulposus (NP) cells (NPCs). NP tissue samples with different Pfirrmann grades were collected from patients with different degrees of IVDD. Western blot and immunohistochemical staining were used to compare the expression of POSTN protein in NP tissues. Using the IL-1ß-induced IVDD model, NPCs were transfected with lentivirus-coated si-POSTN to down-regulate the expression of POSTN and treated with CU-T12-9 to evaluate the involvement of NF-κB pathway. Western blot, immunofluorescence, and TUNEL staining were used to detect the expression changes of inflammation, apoptosis and NF-κB pathway-related proteins in NPCs. To investigate the role of POSTN in vivo, a rat IVDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-POSTN, and H&E staining and immunohistochemical staining were performed. POSTN expression is positively correlated with the severity of IVDD in human. POSTN expression was significantly increased in the IL-1ß-induced NPCs degeneration model. Downregulation of POSTN protects NPCs from IL-1ß-induced inflammation and apoptosis. CU-T12-9 treatment reversed the protective effect of si-POSTN on NPCs. Furthermore, lentivirus-coated si-POSTN injection partially reversed NP tissue damage in the IVDD model in vivo. POSTN knockdown reduces inflammation and apoptosis of NPCs by inhibiting NF-κB pathway, and ultimately prevents IVDD. Therefore, POSTN may be an effective target for the treatment of IVDD.

3.
China CDC Wkly ; 6(22): 503-508, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38855567

RESUMEN

What is already known about this topic?: In 2013, 31.61% of students perceived quitting smoking as difficult, 61.73% considered smoking less attractive, and 73.89% believed that secondhand smoke is definitely harmful to health. What is added by this report?: The percentage of students who perceived quitting smoking as difficult increased from 31.61% in 2013 to 38.83% in 2021, while the percentage of students who found smoking less attractive rose from 61.73% to 69.40%. Conversely, there was a decrease in the percentage of students who perceived secondhand smoke as harmful, from 73.89% to 68.46%. An increased awareness of the hazards of secondhand smoke was associated with a reduction in smoking behaviors. What are the implications for public health practice?: It is imperative to enhance health education efforts that aim to raise awareness of the hazards of secondhand smoke.

4.
Eng Life Sci ; 24(5): 2300207, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38708415

RESUMEN

Human activities have led to the release of various environmental pollutants, triggering ecological challenges. In situ, microbial communities in these contaminated environments are usually assumed to possess the potential capacity of pollutant degradation. However, the majority of genes and microorganisms in these environments remain uncharacterized and uncultured. The advent of meta-omics provided culture-independent solutions for exploring the functional genes and microorganisms within complex microbial communities. In this review, we highlight the applications and methodologies of meta-omics in uncovering of genes and microbes from contaminated environments. These findings may assist in future bioremediation research.

5.
Glob Chang Biol ; 30(2): e17160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379454

RESUMEN

Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the ß-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.


Asunto(s)
Ecosistema , Suelo , Microbiología del Suelo , Bacterias/genética , Fósforo
6.
J Acoust Soc Am ; 155(1): 681-694, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270480

RESUMEN

The Janus-Helmholtz (JH) transducer is a low-frequency, high-power, broadband underwater transducer type. Numerous studies have shown the effectiveness of the finite element method (FEM) in designing JH transducers and predicting their electroacoustic performance. However, a precise theoretical model for JH transducers has not yet been proposed, and the modal identification problem of JH transducers remains unsolved. In this paper, a distributed parameter model (DPM) of the JH transducer is proposed, which consists of the DPM of a Janus transducer and the DPM of a cylindrical liquid cavity under elastic wall conditions. By comparing the DPM with FEM, it is confirmed that the DPM can accurately calculate the resonant frequencies, admittance, amplitude, and phase of vibration velocity of the JH transducer. Additionally, a physical analogy is introduced to reveal the relationships between the transducer's resonances. Two JH transducers with different liquid cavities are fabricated and tested, and the results from the DPM, FEM, and experiments exhibit good agreement. The DPM can not only provide valuable theoretical support but also significantly reduce much time in designing JH transducers. Furthermore, it may inspire further advancements in adjusting the resonant frequencies or expanding the working bandwidth of JH transducers.

7.
Proc Natl Acad Sci U S A ; 120(45): e2205463120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37917793

RESUMEN

Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement without leaking any further information. As an efficient variant of ZKP, noninteractive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir heuristic is essential to a wide spectrum of applications, such as federated learning, blockchain, and social networks. However, the heuristic is typically built upon the random oracle model that makes ideal assumptions about hash functions, which does not hold in reality and thus undermines the security of the protocol. Here, we present a quantum solution to the problem. Instead of resorting to a random oracle model, we implement a quantum randomness service. This service generates random numbers certified by the loophole-free Bell test and delivers them with postquantum cryptography (PQC) authentication. By employing this service, we conceive and implement NIZKP of the three-coloring problem. By bridging together three prominent research themes, quantum nonlocality, PQC, and ZKP, we anticipate this work to inspire more innovative applications that combine quantum information science and the cryptography field.

8.
J Hazard Mater ; 459: 132145, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37557045

RESUMEN

The remediation of polluted sites containing multiple contaminants like nicotine and heavy metals poses significant challenges, due to detrimental effects like cell death. In this study, we isolated a new strain Pseudomonas sp. NBB capable of efficiently degrading nicotine even in high level of heavy metals. It degraded nicotine through pyrrolidine pathway and displayed minimum inhibitory concentrations of 2 mM for barium, copper, and lead, and 5 mM for manganese. In the presence of 2 mM Ba2+ or Pb2+, 3 g L-1 nicotine could be completely degraded within 24 h. Moreover, under 0.5 mM Cu2+ or 5 mM Mn2+ stress, 24.13% and 72.56% of nicotine degradation were achieved in 60 h, respectively. Strain NBB tolerances metal stress by various strategies, including morphological changes, up-regulation of macromolecule transporters, cellular response to DNA damage, and down-regulation of ABC transporters. Notably, among the 153 up-regulated genes, cds_821 was identified as manganese exporter (MneA) after gene disruption and recovery experiments. This study presents a novel strain capable of efficiently degrading nicotine and displaying remarkable resistance to heavy metals. The findings of this research provide valuable insights into the potential application of nicotine bioremediation in heavy metal-contaminated areas.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Nicotina , Manganeso/metabolismo , Pseudomonas/metabolismo , Metales Pesados/análisis , Cobre/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo
9.
J Back Musculoskelet Rehabil ; 36(6): 1345-1354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37458019

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural disorder of the spine in adolescents, often associated with structural deformities in both coronal and axial positions. Apical vertex rotation (AVR) is one of the main indicators of axial deformity in patients with scoliosis. Currently, there are few studies on the impact of AVR in the treatment of AIS. OBJECTIVE: This study examined the influence of different AVR on AIS after brace treatment. METHODS: Data were collected from 106 AIS participants aged 11-16 years from the orthopedic outpatient clinic of the Second Hospital of Lanzhou University. Two orthopaedic professionals measured the Cobb angle, AVR and spinal mid-line offset before and after brace treatment, and descriptive and linear correlation analyses were used to determine the correlation between AVR and AIS measured parameters. RESULTS: (1) In AIS volunteers with the same AVR, the treatment effect of AIS with lumbar predominant curvature was higher than that of AIS with thoracic predominant curvature. The treatment effect tended to decrease with increasing AVR. (2) Spinal mid-line deviation was associated with AVR. For patients with AIS with I and II degrees of AVR, the treatment effect of spinal mid-line offset after bracing is better. For AIS patients with AVR III degrees and above, the degree of correction of spinal mid-line offset decreases with the continuous correction of Cobb angle. CONCLUSIONS: The efficacy of AIS was found to be related to the severity of AVR. The efficacy of AIS with predominantly lumbar curvature was significantly higher than that of AIS with predominantly thoracic curvature. The efficacy of treatment of mid-line spinal deviation also decreased with increasing AVR.


Asunto(s)
Cifosis , Escoliosis , Humanos , Adolescente , Escoliosis/terapia , Rotación , Vértebras Torácicas , Estudios Retrospectivos , Resultado del Tratamiento
10.
Adv Healthc Mater ; 12(25): e2300469, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37462929

RESUMEN

The healing of infected bone defects (IBD) is a complex physiological process involving a series of spatially and temporally overlapping events, including pathogen clearance, immunological modulation, vascularization, and osteogenesis. Based on the theory that bone healing is regulated by both biochemical and biophysical signals, in this study, a copper doped bioglass (CuBGs)/methacryloyl-modified gelatin nanoparticle (MA-GNPs)/methacrylated silk fibroin (SilMA) hybrid hydrogel is developed to promote IBD healing. This hybrid hydrogel demonstrates a dual-photocrosslinked interpenetrating network mechanism, wherein the photocrosslinked SilMA as the main network ensures structural integrity, and the photocrosslinked MA-GNPs colloidal network increases strength and dissipates loading forces. In an IBD model, the hydrogel exhibits excellent biophysical characteristics, such as adhesion, adaptation to irregular defect shapes, and in situ physical reinforcement. At the same time, by sequentially releasing bioactive ions such as Cu2+ , Ca2+ , and Si2+ ions from CuBGs on demand, the hydrogel spatiotemporally coordinates antibacterial, immunomodulatory and bone remodeling events, efficiently removing infection and accelerating bone repair without the use of antibiotics or exogenous recombinant proteins. Therefore, the hybrid hydrogel can be used as a simple and effective method for the treatment of IBD.


Asunto(s)
Fibroínas , Hidrogeles , Hidrogeles/química , Cicatrización de Heridas , Osteogénesis , Fibroínas/química , Iones/farmacología
11.
J Colloid Interface Sci ; 650(Pt A): 58-66, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392500

RESUMEN

Liquid crystal (LC) droplets exhibit unique and sensitive response behaviors to surface absorptions, making them promising candidates for sensing aplications. Here, we have developed a label-free, portable, and cost-effective sensor for the specific and rapid detection of silver ions (Ag+) in drinking-water samples. To achieve this, we have modified cytidine into a surfactant (denoted as C10-M-C) and anchored it onto the surface of LC droplets. The specific binding ability between cytidine and Ag+ enables LC droplets anchored with C10-M-C to respond rapidly and specifically to Ag+ ions. Furthermore, the sensitivity of the response meets requirements for the harmless concentration of Ag+ in drinking-water. The sensor we developed is label-free, portable, and cost-effectively. We believe that the sensor reported here can be applied to the detection of Ag+ in drinking-water and environmental samples.

12.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 118-123, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300680

RESUMEN

The research was conducted to analyze the clinical effects and corresponding molecular mechanisms of short-term treatment of acute coronary syndromes (ACS) by different doses of atorvastatin. In the research, a total of 90 ACS patients were included as the samples and divided into an experimental group (conventional treatment+60mg/per time/late atorvastatin), control group 1 (conventional treatment+25mg/per time/late atorvastatin), and control group 2 (25mg/per time/late atorvastatin) according to different doses of atorvastatin. After that, their blood fat and inflammatory factors before and after treatment were analyzed. Total cholesterol (TC) and high-density liptein cholesterol (HDL-C) levels of the experimental group were inferior to those of control groups 1 and 2 in the 5th and 7th days (P<0.05). After treatment, visfatin, matrix metalloproteinase-9 (MMP-9), and brain natriuretic peptide (BNP) of patients in the experimental group and control groups 1 and 2 were notably inferior to those in control groups 1 and 2 (P<0.05). Besides, interleukin-6 (IL-6) and hypersensitive C-reactive protein (hs-CRP) of patients in the experimental group and control groups 1 and 2 were inferior to those in control groups 1 and 2 after treatment (P<0.05). Based on the above results, the short-term treatment by large-dose atorvastatin could reduce blood far and inflammatory factor levels of ACS patients more effectively than by conventional dose, and further inhibit inflammatory reactions and improve patient prognosis with safety and feasibility.


Asunto(s)
Síndrome Coronario Agudo , Humanos , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Síndrome Coronario Agudo/tratamiento farmacológico , Metaloproteinasa 9 de la Matriz , Nicotinamida Fosforribosiltransferasa , Proteína C-Reactiva/metabolismo , Colesterol , Resultado del Tratamiento
14.
Microbiome ; 11(1): 95, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127665

RESUMEN

BACKGROUND: For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS: We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS: Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Suelo/química , Estado Nutricional
15.
Bioact Mater ; 23: 274-299, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36439088

RESUMEN

Low back pain (LBP) is a common disease that imposes a huge social and economic burden on people. Intervertebral disc (IVD) degeneration (IVDD) is often considered to be the leading cause of LBP and further aggravate and cause serious spinal problems. The established treatment strategy for IVDD consists of physiotherapy, pain medication by drug therapy, and, if necessary, surgery, but none of them can be treated from the etiology; that is, it cannot fundamentally reverse IVD and reconstruct the mechanical function of the spine. With the development of nanotechnology and regenerative medicine, nano-drug delivery systems (NDDSs) have improved treatment results because of their good biodegradability, biocompatibility, precise targeted specific drug delivery, prolonged drug release time, and enhanced drug efficacy, and various new NDDSs for drugs, proteins, cells, and genes have brought light and hope for the treatment of IVDD. This review summarizes the research progress of NDDSs in the treatment of IVDD and provides prospects for using NDDSs to address the challenges of IVDD. We hope that the ideas generated in this review will provide insight into the precise treatment of IVDD.

16.
Exp Neurol ; 361: 114301, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538982

RESUMEN

Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/ß-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/ß-catenin signaling pathway to inhibit apoptosis.


Asunto(s)
Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Animales , Ratas , Apoptosis , Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Ratas Sprague-Dawley , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Vía de Señalización Wnt
17.
Anal Bioanal Chem ; 414(24): 7123-7141, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962791

RESUMEN

Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.


Asunto(s)
Exosomas , Biomarcadores/análisis , Exosomas/química
18.
Phys Rev Lett ; 129(5): 050502, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960585

RESUMEN

The security of quantum key distribution (QKD) usually relies on that the users' devices are well characterized according to the security models made in the security proofs. In contrast, device-independent QKD-an entanglement-based protocol-permits the security even without any knowledge of the underlying quantum devices. Despite its beauty in theory, device-independent QKD is elusive to realize with current technologies. Especially in photonic implementations, the requirements for detection efficiency are far beyond the performance of any reported device-independent experiments. In this Letter, we report a proof-of-principle experiment of device-independent QKD based on a photonic setup in the asymptotic limit. On the theoretical side, we enhance the loss tolerance for real device imperfections by combining different approaches, namely, random postselection, noisy preprocessing, and developed numerical methods to estimate the key rate via the von Neumann entropy. On the experimental side, we develop a high-quality polarization-entangled photon source achieving a state-of-the-art (heralded) detection efficiency about 87.5%. Although our experiment does not include random basis switching, the achieved efficiency outperforms previous photonic experiments involving loophole-free Bell tests. Together, we show that the measured quantum correlations are strong enough to ensure a positive key rate under the fiber length up to 220 m. Our photonic platform can generate entangled photons at a high rate and in the telecom wavelength, which is desirable for high-speed generation over long distances. The results present an important step toward a full demonstration of photonic device-independent QKD.

19.
Mediators Inflamm ; 2022: 2579003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966334

RESUMEN

Spinal cord injury (SCI) is a highly disabling disorder for which few effective treatments are available. Grape seed proanthocyanidins (GSPs) are polyphenolic compounds with various biological activities. In our preliminary experiment, GSP promoted functional recovery in rats with SCI, but the mechanism remains unclear. Therefore, we explored the protective effects of GSP on SCI and its possible underlying mechanisms. We found that GSP promoted locomotor recovery, reduced neuronal apoptosis, increased neuronal preservation, and regulated microglial polarisation in vivo. We also performed in vitro studies to verify the effects of GSP on neuronal protection and microglial polarisation and their potential mechanisms. We found that GSP regulated microglial polarisation and inhibited apoptosis in PC12 cells induced by M1-BV2 cells through the Toll-like receptor 4- (TLR4-) mediated nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase/serine threonine kinase (PI3K/AKT) signaling pathways. This suggests that GSP regulates microglial polarisation and prevents neuronal apoptosis, possibly by the TLR4-mediated NF-κB and PI3K/AKT signaling pathways.


Asunto(s)
Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Animales , Extracto de Semillas de Uva , Microglía/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proantocianidinas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Receptor Toll-Like 4/metabolismo
20.
Analyst ; 147(15): 3585-3592, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35822491

RESUMEN

There is an increasing need to develop simple yet effective sensors with high sensitivity, high selectivity, rapid response, and low cost for on-site detection of UO22+ in the environment in planned or emergency situations. Herein, we develop a UO22+ responsive interpenetrating porous photonic crystal ball (IPPCB) sensor by template replication and a two-step activation method. The amidoxime group and carboxyl group in the hydrogel drive the shrinkage of the hydrogel network through the coordination with UO22+, which reduces the lattice spacing, thereby changing the structure color and shifting the reflection peak position. Therefore, we can perform a semi-quantitative analysis of UO22+ with the naked eye or a fiber spectrometer. Benefiting from the sensor's spherical symmetry and periodic interpenetrating porous structure, the sensor can provide angle-independent, fast (12 min), and sensitive (minimum detection concentration of 1 nM) detection of UO22+. Moreover, IPPCBs have high selectivity and excellent regeneration performance, which can be applied to real sample detection.


Asunto(s)
ADN Catalítico , ADN Catalítico/química , Hidrogeles , Iones/química , Fotones , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA