Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 1025886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312974

RESUMEN

Red vinasse acid has a distinct flavor and a vivid red color that are directly tied to the intricate metabolic activities of microorganisms that produce it. In this study, metagenomic technology was used to mine its functional genes and examine the microbial diversity of red vinasse acid. The findings revealed the identification of 2,609 species, 782 genera, and 63 phyla of microorganisms, and the dominant genus was Lactobacillus. Amino acid metabolism and carbohydrate metabolism were significant activities among the 16,093 and 49,652 genes that were annotated in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. In gluconeogenesis, red vinasse acid encodes 194 genes controlling the transporter protein systems of different sugars and has key enzyme genes that catalyze the conversion of intracellular sugars into glycolytic intermediates. In amino acid flavor formation, red vinasse acid contains 32 control genes for branched-chain aminotransferase (BCAT), 27 control genes for aromatic-amino-acid transaminase (ArAT), 60 control genes for keto acid invertase, 123 control genes for alcohol/aldehyde dehydrogenase, and 27 control genes for acetyl esterase, which have the basis for the formation of strong flavor substances from amino acids.

2.
Nanomaterials (Basel) ; 12(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35683759

RESUMEN

The aim of this work is to develop a green route for platinum nanoparticles (PtNPs) biosynthesized using Cordyceps flower extract and to evaluate their antioxidant activity and antibacterial activity. Different characterization techniques were utilized to characterize the biosynthetic PtNPs. The results showed that PtNPs were spherical particles covered with Cordyceps flower extract. The average particle size of PtNPs in Dynamic Light Scattering was 84.67 ± 5.28 nm, while that of PtNPs in Transmission Electron Microscope was 13.34 ± 4.06 nm. Antioxidant activity of PtNPs was evaluated by DPPH free radical scavenging ability test. The results showed that the antioxidant activity was positively correlated with the concentration of PtNPs, the DPPH scavenging efficiency of PtNPs (0.50-125.00 µg/mL) was 27.77-44.00%. In addition, the morphological changes of four kinds of bacteria (Escherichia coli, Salmonella typhimurium, Bacillus subtilis, Staphylococcus aureus) exposed to PtNPs were observed by scanning electron microscope. The results showed that the antibacterial activity of PtNPs against Gram-negative bacteria was stronger than that of Gram-positive bacteria.

3.
Microorganisms ; 9(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946191

RESUMEN

Listeria monocytogenes is a zoonotic food-borne pathogen. The production of food-borne pathogenic bacteria aggregates is considered to be a way to improve their resistance and persistence in the food chain. Ralstonia insidiosa has been shown to induce L. monocytogenes to form suspended aggregates, but induction mechanisms remain unclear. In the study, the effect of R. insidiosa cell-free supernatants cultured in 10% TSB medium (10% RIS) on the formation of L. monocytogenes suspended aggregates was evaluated. Next, the Illumina RNA sequencing was used to compare the transcriptional profiles of L. monocytogenes in 10% TSB medium with and without 10% RIS to identify differentially expressed genes (DEGs). The result of functional annotation analysis of DEGs indicated that these genes mainly participate in two component system, bacterial chemotaxis and flagellar assembly. Then the reaction network of L. monocytogenes suspended aggregates with the presence of 10% RIS was summarized. The gene-deletion strain of L. monocytogenes was constructed by homologous recombination. The result showed that cheA and cheY are key genes in the formation of suspended aggregates. This research is the preliminary verification of suspended aggregates' RNA sequencing and is helpful to analyze the aggregation mechanisms of food-borne pathogenic bacteria from a new perspective.

4.
J Food Prot ; 84(12): 2071-2083, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324690

RESUMEN

ABSTRACT: In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multispecies biofilms. Complex interactions among microorganisms may affect the formation of multispecies biofilms and resistance to disinfectants, which are food safety and quality concerns. This article reviews the various interactions among microorganisms in multispecies biofilms, including competitive, cooperative, and neutral interactions. Then, the preliminary mechanisms underlying the formation of multispecies biofilms are discussed in relation to factors, such as quorum-sensing signal molecules, extracellular polymeric substances, and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of interspecies interactions and provide some implications for the control of multispecies biofilms in food processing.


Asunto(s)
Desinfectantes , Biopelículas , Desinfectantes/farmacología , Matriz Extracelular de Sustancias Poliméricas , Manipulación de Alimentos , Microbiología de Alimentos
5.
Genomics ; 113(1 Pt 2): 1199-1206, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301896

RESUMEN

Dermacoccus abyssi strain HZAU 226 is a spoilage bacterium isolated from eggs. So far, there are still few genomic resources available on the Dermacoccus abyssi. Here, we reported the complete genome sequence of Dermacoccus abyssi strain HZAU 226. High-quality DNA was extracted using the Qiagen kit, then single-molecule sequencing was performed by GridION sequencer. The raw data was quality-controlled and assembled to obtain the final genome, which consisted of a complete genome of 2,992,060 bp circular chromosome and a 64,524 bp plasmid. The structural and functional annotations of the genome were achieved through the analysis of different available databases, including antibiotic resistance genes, secondary metabolite synthesis genes and stress-related genes. Meanwhile, comparative genomic analyses of the strains were also performed. This is the first report on the complete genome of Dermacoccus abyssi, which will provide genomic resources for the study of spoilage bacteria in eggs.


Asunto(s)
Actinobacteria/genética , Huevos/microbiología , Genoma Bacteriano , Actinobacteria/efectos de los fármacos , Actinobacteria/aislamiento & purificación , Actinobacteria/patogenicidad , Animales , Farmacorresistencia Bacteriana , Huevos/normas , Anotación de Secuencia Molecular , Aves de Corral/microbiología , Secuenciación Completa del Genoma
6.
Microorganisms ; 8(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403298

RESUMEN

Lysozyme acts as a kind of cationic antimicrobial protein and effectively hydrolyzes bacterial peptidoglycan to have a bactericidal effect, which also plays an important role in protecting eggs from microbial contamination. Dermacoccus abyssi HZAU 226, a Gram-positive bacterium isolated from spoiled eggs, has egg white and lysozyme tolerance, but its survival mechanism is unknown, especially from a transcriptomics point of view. In this study, the high lysozyme tolerance of D. abyssi HZAU 226 was characterized by three independent experiments, and then the Illumina RNA-seq was used to compare the transcriptional profiles of this strain in Luria-Bertani (LB) medium with and without 5 mg/mL lysozyme to identify differentially expressed genes (DEGs); 1024 DEGs were identified by expression analysis, including 544 up-regulated genes and 480 down-regulated genes in response to lysozyme treatment. The functional annotation analysis results of DEGs showed that these genes were mainly involved in glutathione biosynthesis and metabolism, ion transport, energy metabolism pathways, and peptidoglycan biosynthesis. This study is the first report of bacterial-related lysozyme RNA-seq, and our results help in understanding the lysozyme-tolerance mechanism of bacteria from a new perspective and provide transcriptome resources for subsequent research in related fields.

7.
J Food Prot ; 83(2): 196-203, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31895006

RESUMEN

ABSTRACT: Salmonella enterica is a prominent foodborne pathogen, including diverse serotypes that are prolific biofilm formers. Its ability to form biofilm can be affected by multiple environmental factors. In this study, the effect of salinity on biofilm formation by S. enterica was evaluated by using two recently isolated strains of Salmonella serotypes Enteritidis and Newport. Although supplementing the growth medium with a low concentration (0.5 to 2%) of sodium chloride (NaCl) slightly enhanced biofilm formation for the strain S. enterica serovar Enteritidis 110, it sharply reduced or abolished biofilm formation by the strain S. enterica serovar Newport 193. This differential effect of salinity on S. enterica strains of different serotypes was poorly correlated with inhibition of planktonic growth but strongly correlated with cell motility. Examining genes known to affect biofilm formation showed that the expression of adrA, csgD, and fliC, which encode proteins required for surface adhesion and cell motility, was significantly downregulated with salinity increase in Salmonella Newport 193 but not in Salmonella Enteritidis 110. Therefore, it is plausible that the differential effect of salinity on biofilm formation by Salmonella Enteritidis 110 and Salmonella Newport 193 resulted from the differential regulation to genes required for cell adherence and motility.

8.
Microb Pathog ; 127: 183-189, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30458253

RESUMEN

Although the level of reactive oxygen species (ROS) is altered upon the formation of bacterial biofilm, the relationship between ROS alteration and biofilm formation is still unclear. The aim of the present study is to use Listeria monocytogenes (L. monocytogenes) as a model organism to examine whether ROS have an effect on the biofilm formation. After eliminating ROS by treatment with NAD(P)H oxidase inhibitor Diphenyleneiodonium chloride (DPI) or scavenging reagents N-acetylcysteine (NAC), the biofilm formation of L. monocytogenes was examined. Our data demonstrate that DPI and NAC induced-reduction of ROS enhances the biofilm formation in L. monocytogenes without affecting bacterial growth and activity. These data provide the evidence that ROS produced by L. monocytogenes inhibit the biofilm formation.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Especies Reactivas de Oxígeno/farmacología , Biopelículas/efectos de los fármacos , Oxidación-Reducción
9.
Food Sci Nutr ; 6(6): 1501-1507, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30258592

RESUMEN

Listeria monocytogenes (Lm) can colonize human gastrointestinal tract and subsequently cross the intestinal barrier. Reactive oxygen species (ROS) are produced by NADPH oxidase. However, the role of ROS in bacterial invasion remains to be less understood. Herein, we investigated the impact of ROS on Lm invasion to HepG2 using NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), as well as the ROS scavenger, N-acetyl cysteine (NAC). Our results showed that inhibiting ROS increased the invasive capability of Lm. Moreover, after Lm infection, inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1beta (IL-1ß) in HepG2 were significantly upregulated. However, after inhibiting ROS, the expression levels of TNF-α and IL-1ß were downregulated, indicating a failure of host cells to activate the immune mechanism. Taken together, ROS in Lm might be as a signal for host cells to sense Lm invasion and then stimulate cells to activate the immune mechanism.

11.
Free Radic Biol Med ; 112: 608-615, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28916475

RESUMEN

NADH oxidase (NOX) plays important roles in respiration and reactive oxygen species (ROS) generation in cells. In this study, we explored the function of NOX in Listeria monocytogenes by gene deletion. From our results, nox mutant strain (∆nox) had lower H2O2 level and showed no significant alteration in bacteria growth activity. But it had enhanced invasiveness during the invasion of glial cells and mice brain compared to wildtype strain. Furthermore, several virulence genes involved in invasion, such as inlA, inlB, vip and sigB, were upregulated in ∆nox, and the alterations could be restored by complementation. To explore if nox was involved in the interaction of pathogen and host, we examined the generation of host ROS including superoxide and H2O2 during infection, and found ∆nox invasion leading to less superoxide and H2O2 generation. Besides, the upregulation of pro-inflammatory factors in glial cells was restrained when invaded by ∆nox compared to wildtype and complementary strain. In conclusion, our study evaluated the function of nox in L. monocytogenes and indicated that nox could regulate the invasion of L. monocytogenes by regulating virulence genes expression and the interaction of host-and- pathogens.


Asunto(s)
Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , Listeriosis/genética , NADPH Oxidasas/genética , Eliminación de Secuencia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Encéfalo/metabolismo , Encéfalo/microbiología , Encéfalo/patología , Prueba de Complementación Genética , Interacciones Huésped-Patógeno , Peróxido de Hidrógeno/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/patogenicidad , Listeriosis/metabolismo , Listeriosis/microbiología , Listeriosis/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , NADPH Oxidasas/deficiencia , Neuroglía/metabolismo , Neuroglía/microbiología , Neuroglía/patología , Factor sigma/genética , Factor sigma/metabolismo , Transducción de Señal , Superóxidos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...