Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Intervalo de año de publicación
1.
Anim Genet ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136303

RESUMEN

Piglet birth weight is associated with preweaning survival, and its related traits have been included in the breeding program. Thus, understanding its genetic basis is essential. This study identified four birth weight-associated genomic regions on chromosomes 2, 4, 5, and 7 through genome-wide association study analysis in 7286 pigs from three different pure breeds using the FarmCPU model. The genetic and phenotypic variance explained by the four candidate regions is 8.42% and 1.85%, respectively. Twenty-eight candidate genes were detected, of which APPL2, TGFBI, MACROH2A1, and SEC22B have been reported to affect body growth or development. In addition, 21 H3K4me3-enriched peaks overlapped with the birth weight-associated genomic regions were identified by integrating the genome-wide association study results with our previous ChIP-seq and RNA-seq data generated in the pig placenta, a fetal organ relevant to birth weight, and three of the regulatory regions influence TGFBI, MACROH2A1, and SEC22B expression. This study provides new insights into understanding the mechanisms for birth weight. Further investigating the variants in the regulatory regions would help identify the functional variants for birth weight in pigs.

2.
Front Med (Lausanne) ; 11: 1441032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139790

RESUMEN

Background: Light chain (AL) amyloidosis stands as the most prevalent subtype of systemic amyloidosis, encompassing a group of rare diseases. Here, we evaluated the scientific landscape of AL amyloidosis to investigate research trends and identify hotspots within the field. Methods: Relevant studies on AL amyloidosis published over the past two decades were retrieved from the Web of Science Core Collection. The publications between 2005 and 2024 were subjected to bibliometric analyses, leveraging tools including CiteSpace, VOSviewer, RStudio and MS Excel to analyse and visualize the annual publication trend, co-occurrence patterns, collaborative networks among countries, organizations, and authors. Burst keywords and references were also examined to obtain the research history, and emerging hotspots. Results: The bibliometric analysis included 2,864 articles published between 2005 and 2024. The most productive journal is Amyloid-Journal of Protein Folding Disorders. The United States, along with several developed nations, emerges as a dominant force in international AL amyloidosis research. "AL amyloidosis" and "cardiac amyloidosis" were the primary hotspots over the past two decades, and "Biomarkers," "Cardiac amyloidosis," and "treatment" would be future trends. Conclusion: This bibliometric analysis examined the research developments in AL amyloidosis over the past two decades using bibliometric software. Recent research in this field primarily focuses on two main areas: clinical diagnosis and treatment of AL amyloidosis, as well as cardiac amyloidosis. Emphasis is placed on understanding the mechanisms underlying immunoglobulin light chain aggregation and deposition to mitigate organ involvement.

3.
J Hazard Mater ; 478: 135494, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39141940

RESUMEN

The widespread use of organophosphate flame retardants (OPFRs), a serious type of pervasive environmental contaminants, has led to a global concern regarding their diverse toxicities to living beings. Using a combination of experimental and theoretical approaches, we systematically studied the adsorption, accumulation, and influence of a series of OPFRs on the lipid membranes of bacteria and cells. Our results revealed that OPFRs can aggregate in lipid membranes, leading to the destruction of membrane integrity. During this process, the molecular structure of the OPFRs is a dominant factor that significantly influences the strength of their interaction with the lipid membrane, resulting in varying degrees of biotoxicity. Triphenyl phosphate (TPHP), owing to its large molecular size and strong hydrophobicity, causes severe membrane disruption through the formation of nanoclusters. The corresponding severe toxicity originates from the phase transitions of the lipid membranes. In contrast, smaller OPFRs such as triethyl phosphate (TEP) and tris(2-chloroethyl) phosphate (TCEP) have weaker hydrophobicity and induce minimal membrane disturbance and ineffective damage. In vivo, gavage of TPHP induced more severe barrier damage and inflammatory infiltration in mice than TEP or TCEP, confirming the higher toxicity of TPHP. Overall, our study elucidates the structure-dependent adsorption of OPFRs onto lipid membranes, highlighting their destructive interactions with membranes as the origin of OPFR toxicity.

4.
Int Immunopharmacol ; 140: 112875, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39116492

RESUMEN

OBJECTIVE: The aim of this study was to assess the prognostic significance of α-1,3-mannitrotransferase (ALG3) in triple-negative breast cancer (TNBC) and investigate its impact and potential mechanism on the efficacy of anti-PD-1 therapy. METHODS: Bioinformatics analysis was used to examine the expression of ALG3 in cancer patients using UACLAN and other databases. The associations of the ALG3 gene and the clinicopathological features of breast cancer were examined with bc-GenExMiner database. Correlation between ALG3 expression and survival was further established utilizing the Kaplan-Meier Plotter database. Immunohistochemistry (IHC) was used to analyze the expression of ALG3 in cohort of breast cancer patients from Hubei cancer hospital to confirmed the prognostic value of ALG3 in TNBC. The effect of ALG3 on the levels of infiltrating immune cells was also analyzed. And the mutation module within cBioPortal was utilized to visualize ALG3 mutations in BRCA. The CRISPR/Cas9 technique was used to establish ALG3 low-expression TNBC cell lines. Influence of ALG3 expression on cancer cell proliferation and chemotherapeutic responsiveness was scrutinized in vitro. Animal models were constructed to evaluate the alteration of tumor sensitivity to anti-PD-1 therapy with decreased ALG3 expression. And flow cytometry and IHC were used to investigate the tumor immune microenvironment. Association of PD-L1 Glycosylation and ALG3 expression were also investigated by western blot. RESULTS: ALG3 expression was elevated in TNBC and was strikingly linked to unfavorable clinical features such as lymphatic node metastasis, high NPI, advanced stage and age, etc. Furthermore, high ALG3 expression was associated with shorter OS in TNBC patients. Mechanistically, ALG3 expression was negatively correlated with the infiltration of CD8+ T cells, CD4+ T cells, and NK cells. ALG3-KO cells had increased sensitivity to chemotherapeutic agents. In animal models, the volume of ALG3-KO tumors was lower than the control group with immunotherapy. ALG3-KO tumors showed an increased proportion of CD8+ T cells, while a decreased proportion of regulatory T cells and M2-type macrophages. The expression level of PD-L1 protein was not affected by ALG3 level, but the glycosylation level was significantly decreased in tumor. Similarly, the glycosylation level of PD-L1 is reduced in ALG3-KO cell in vitro. Additionally, ALG3 knockout lead to reduced tolerance of tumor cells to IFN-γ, thereby enhancing the efficacy of immunotherapy. CONCLUSION: ALG3 is a potential biomarker for poor prognosis of TNBC and may reduce the efficacy of immunotherapy by modulating the tumor microenvironment and glycosylation of PD-L1.

5.
Mol Ecol ; : e17493, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132714

RESUMEN

In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms. Heat acclimation for larvae incurred a fitness cost in pupae when exposed to high temperature, yet a significant transgenerational effect surfaced, revealing heightened fitness benefit in pupae from HA39, even without additional heat exposure during larval recovery at 27°C. This transgenerational effect exhibited a short-term memory, diminishing after two recovery generations. Moreover, the effect correlated with increased superoxide dismutase (SOD) enzyme activity and expression levels of oxidoreductase genes, representing physiological and molecular foundations of heat acclimation. Heat-acclimated larvae displayed elevated DNA methylation levels, while pupae from HA39, in recovery generations, exhibited decreased methylation indicated by the upregulation of a demethylase gene and downregulation of two methyltransferase genes at high temperatures. In summary, heat acclimation induces DNA methylation, orchestrating heat-stress memory and influencing the expression levels of oxidoreductase genes and SOD activity. Heat-stress memory enhances the acclimation of the migratory insect pest to global warming.

6.
Rice (N Y) ; 17(1): 42, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958835

RESUMEN

Rice sheath blight, caused by Rhizoctonia solani Kihn (R. solani), poses a significant threat to rice production and quality. Autotetraploid rice, developed through chromosome doubling of diploid rice, holds great potential for enhancing biological and yield traits. However, its resistance to sheath blight in the field has remained unclear. In this study, the field resistance of 35 autotetraploid genotypes and corresponding diploids was evaluated across three environments from 2020 to 2021. The booting stage was optimal for inoculating period based on the inoculation and analysis of R. solani at five rice growth stages. We found autotetraploids generally exhibited lower disease scores than diploids, indicating enhanced resistance after chromosome doubling. Among the 35 genotypes, 16 (45.71%) displayed increased resistance, 2 (5.71%) showed decreased resistance, and 17 (48.57%) displayed unstable resistance in different sowing dates. All combinations of the genotype, environment and ploidy, including the genotype-environment-ploidy interaction, contributed significantly to field resistance. Chromosome doubling increased sheath blight resistance in most genotypes, but was also dependent on the genotype-environment interaction. To elucidate the enhanced resistance mechanism, RNA-seq revealed autotetraploid recruited more down-regulated differentially expressed genes (DEGs), additionally, more resistance-related DEGs, were down-regulated at 24 h post inoculation in autotetraploid versus diploid. The ubiquinone/terpenoid quinone and diterpenoid biosynthesis pathways may play key roles in ploidy-specific resistance mechanisms. In summary, our findings shed light on the understanding of sheath blight resistance mechanisms in autotetraploid rice.

7.
Biochem Biophys Res Commun ; 731: 150394, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024978

RESUMEN

Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.


Asunto(s)
Aflatoxina B1 , Cromatina , Aflatoxina B1/toxicidad , Animales , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Línea Celular , Porcinos , Transcripción Genética/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica/efectos de los fármacos
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000241

RESUMEN

Common wild rice (Oryza rufipogon Griff.) is an important germplasm resource containing valuable genes. Our previous analysis reported a stable wild rice inbred line, Huaye3, which derives from the common wild rice of Guangdong Province. However, there was no information about its drought tolerance ability. Here, we assessed the germination characteristics and seedling growth between the Dawennuo and Huaye3 under five concentrations of PEG6000 treatment (0, 5%, 10%, 15%, and 20%). Huaye3 showed a stronger drought tolerance ability, and its seed germination rate still reached more than 52.50% compared with Dawennuo, which was only 25.83% under the 20% PEG6000 treatment. Cytological observations between the Dawennuo and Huaye3 indicated the root tip elongation zone and buds of Huaye3 were less affected by the PEG6000 treatment, resulting in a lower percentage of abnormalities of cortical cells, stele, and shrinkage of epidermal cells. Using the re-sequencing analysis, we detected 13,909 genes that existed in the genetic variation compared with Dawennuo. Of these genes, 39 were annotated as drought stress-related genes and their variance existed in the CDS region. Our study proved the strong drought stress tolerance ability of Huaye3, which provides the theoretical basis for the drought resistance germplasm selection in rice.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Estrés Fisiológico/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Germinación/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Sequía
9.
Front Public Health ; 12: 1342632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050613

RESUMEN

Introduction: The procurement of medicines via China's national volume-based procurement (NVBP) necessitates collaboration among various entities. This paper highlights the legal significance of the engagement of pharmaceutical companies, hospitals, and the National Healthcare Security Administration (NHSA) in improving drug accessibility. Methods: We conducted a numerical simulation using MATLAB to develop an evolutionary game model involving these three participants in NVBP. Results: Our findings indicate that the final evolutionary stabilization strategies are pharmaceutical companies actively participating, hospitals using bid-winning medicines, and the NHSA implementing a low-intensity intervention. The study reveals that the evolutionary outcomes for hospitals and pharmaceutical companies are significantly affected by factors such as NHSA's subsidy level and pharmaceutical companies' level of participation. However, NHSA's decision-making process is less influenced by these factors. Discussion: From a legal perspective, the successful implementation of NVBP, ensuring fairness and legality, requires adherence to relevant policies and regulations. The NHSA should employ statutory incentives and regulatory methods in formulating and adjusting NVBP policy to enable pharmaceutical companies, hospitals, and the NHSA to exercise their rights rationally within the legal framework of the game process.


Asunto(s)
Industria Farmacéutica , China , Humanos , Accesibilidad a los Servicios de Salud , Hospitales
10.
Front Plant Sci ; 15: 1421207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933462

RESUMEN

Introduction: Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods: An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion: These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.

11.
Rice (N Y) ; 17(1): 41, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916708

RESUMEN

Great yield-enhancing prospects of autotetraploid rice was restricted by various polyploidy-induced reproductive dysfunction. To surmount these challenges, our group has generated a series of valuable fertile tetraploid lines (denoted as neo-tetraploid rice) through 20-year efforts. With this context, a G-type lectin receptor-like kinase, OsNRFG6, was identified as a pivotal factor associated with reproductive regulation in neo-tetraploid rice. Nevertheless, it is still elusive about a comprehensive understanding of its precise functional roles and underlying molecular mechanisms during reproduction of neo-tetraploid rice. Here, we demonstrated that OsNRFG6 executed a constitutive expression pattern and encoded proteins localizing in perinucleus and endoplasmic reticulum. Subsequently, four independent mutant lines of OsNRFG6 within neo-tetraploid rice background were further identified, all displaying low seed-setting rate due to abortive embryo sacs and defective double fertilization. RNA-seq and RT-qPCR revealed a significant down-regulation of OsNRFG6 and female reproductive genes such as OsMEL1 and LOG in ovaries prior to and post-fertilization, attributing this effect to OsNRFG6 mutation. Furthermore, through yeast-two hybrids, bimolecular fluorescence complementation assays, and luciferase complementation imaging assays, it was determined that OsNRFG6 could interact with itself and two female reproductive proteins (LOG and OsDES1) to form protein complexes. These results elucidate the reproductive functions and molecular pathway governed by OsNRFG6 in regulating fertility of neo-tetraploid rice, offering insights into molecular understanding of fertility improvement in polyploid rice.

12.
BMC Plant Biol ; 24(1): 543, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872082

RESUMEN

BACKGROUND: Bracts are important for ornamental plants, and their developmental regulation process is complex; however, relatively little research has been conducted on bracts. In this study, physiological, biochemical and morphological changes in Bougainvillea glabra leaves, leaf buds and bracts during seven developmental periods were systematically investigated. Moreover, transcriptomic data of B. glabra bracts were obtained using PacBio and Illumina sequencing technologies, and key genes regulating their development were screened. RESULTS: Scanning electron microscopy revealed that the bracts develop via a process involving regression of hairs and a color change from green to white. Transcriptome sequencing revealed 79,130,973 bp of transcript sequences and 45,788 transcripts. Differential gene expression analysis revealed 50 expression patterns across seven developmental periods, with significant variability in transcription factors such as BgAP1, BgFULL, BgCMB1, BgSPL16, BgSPL8, BgDEFA, BgEIL1, and BgBH305. KEGG and GO analyses of growth and development showed the involvement of chlorophyll metabolism and hormone-related metabolic pathways. The chlorophyll metabolism genes included BgPORA, BgSGR, BgPPH, BgPAO and BgRCCR. The growth hormone and abscisic acid signaling pathways involved 44 and 23 homologous genes, and coexpression network analyses revealed that the screened genes BgAPRR5 and BgEXLA1 are involved in the regulation of bract development. CONCLUSIONS: These findings improve the understanding of the molecular mechanism of plant bract development and provide important guidance for the molecular regulation and genetic improvement of the growth and development of ornamental plants, mainly ornamental bracts.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Nyctaginaceae , Nyctaginaceae/genética , Nyctaginaceae/metabolismo , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo
13.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891270

RESUMEN

Understanding the regulation of autotetraploid sterility is essential for harnessing the strong advantages in genomic buffer capacity, biodiversity, and heterosis of autotetraploid rice. miRNAs play crucial roles in fertility regulation, yet information about their reproductive roles and target genes in tetraploid rice remains limited. Here, we used three tetraploid lines, H1 (fertile), HF (fertile), and LF (sterile), to investigate cytological features and identify factors associated with autotetraploid sterility. LF showed abnormal meiosis, resulting in low pollen fertility and viability, ultimately leading to scarce fertilization and a low-seed setting compared to H1 and HF. RNA-seq revealed 30 miRNA-candidate target pairs related to autotetraploid pollen sterility. These pairs showed opposite expression patterns, with differential expression between fertile lines (H1 and HF) and the sterile line (LF). qRT-PCR confirmed that miR9564, miR528, and miR27874 were highly expressed in the anthers of H1 and HF but not in LF, while opposite results were obtained in their targets (ARPS, M2T, and OsRPC53). Haplotype and expression pattern analyses revealed that ARPS was specifically expressed in lines with the same haplotype of MIR9564 (the precursor of miR9564) as LF. Furthermore, the Dual-GFP assay verified that miR9564 inhibited the fluorescence signal of ARPS-GFP. The over-expression of ARPS significantly decreased the seed setting rate (59.10%) and pollen fertility (50.44%) of neo-tetraploid rice, suggesting that ARPS plays important roles in autotetraploid pollen sterility. This study provides insights into the cytological characteristic and miRNA expression profiles of tetraploid lines with different fertility, shedding light on the role of miRNAs in polyploid rice.

14.
Int J Biol Macromol ; 274(Pt 1): 132770, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834121

RESUMEN

Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment. Compared to traditional alkali methods, DES could quickly remove about 26.5 % of sericin in just 40 min, and its degumming efficiency hardly decrease after seven cycles. Owing to the "tear off" degumming mechanism of DES molecules with "large volume", the resulted sericin has a large molecular weight of 250 kDa. In addition, because of antibacterial activity and stabilizing effect, no aggregation occurred and strong bacterial growth inhibition was triggered in the obtained sericin/DES solution. Furthermore, thanks to the good retention of crystalline region and slight swelling of amorphous area, the sericin-free fibroin showed significant increases in moisture absorption and dye uptake, while maintaining good mechanical properties. Featured with high efficiency, reduction in water pollution, easy storage of sericin as well as high quality fibers, this approach is of great potential for silk wet processing.


Asunto(s)
Bombyx , Disolventes Eutécticos Profundos , Sericinas , Seda , Animales , Sericinas/química , Disolventes Eutécticos Profundos/química , Bombyx/química , Seda/química , Antibacterianos/química , Antibacterianos/farmacología , Colina/química , Peso Molecular , Urea/química
15.
Front Immunol ; 15: 1352330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694513

RESUMEN

Introduction: COVID-19 patients can develop autoantibodies against a variety of secreted and membrane proteins, including some expressed on lymphocytes. However, it is unclear what proportion of patients might develop anti-lymphocyte antibodies (ALAb) and what functional relevance they might have. Methods: We evaluated the presence and lytic function of ALAb in the sera of a cohort of 85 COVID-19 patients (68 unvaccinated and 17 vaccinated) assigned to mild (N=63), or moderate/severe disease (N=22) groups. Thirty-seven patients were followed-up after recovery. We also analyzed in vivo complement deposition on COVID-19 patients' lymphocytes and examined its correlation with lymphocyte numbers during acute disease. Results: Compared with healthy donors (HD), patients had an increased prevalence of IgM ALAb, which was significantly higher in moderate/severe disease patients and persisted after recovery. Sera from IgM ALAb+ patients exhibited complement-dependent cytotoxicity (CDC) against HD lymphocytes. Complement protein C3b deposition on patients' CD4 T cells was inversely correlated with CD4 T cell numbers. This correlation was stronger in moderate/severe disease patients. Discussion: IgM ALAb and complement activation against lymphocytes may contribute to the acute lymphopenia observed in COVID-19 patients.


Asunto(s)
Autoanticuerpos , COVID-19 , Activación de Complemento , Inmunoglobulina M , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/sangre , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Femenino , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Activación de Complemento/inmunología , SARS-CoV-2/inmunología , Anciano , Adulto , Linfocitos/inmunología , Prevalencia , Linfocitos T CD4-Positivos/inmunología , Linfopenia/inmunología , Linfopenia/sangre , Complemento C3b/inmunología
16.
Metabolites ; 14(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786732

RESUMEN

The role of metabolic traits in ischemic stroke (IS) has been explored through observational studies and a few Mendelian randomization (MR) studies employing limited methods in European populations. This study aimed to investigate the causal effects of metabolic traits on IS in both East Asian and European populations utilizing multiple MR methods based on genetic insights. Two-sample and multivariable MR were performed, and MR estimates were calculated as inverse-variance weighted (IVW), weighted median, and penalized weighted median. Pleiotropy was assessed by MR-Egger and Mendelian randomization pleiotropy residual sum and outlier tests. Systolic blood pressure (SBP) was associated with an increased risk of IS by IVW in both European (ORIVW: 1.032, 95% CI: 1.026-1.038, p < 0.001) and Japanese populations (ORIVW: 1.870, 95% CI: 1.122-3.116, p = 0.016), which was further confirmed by other methods. Unlike the European population, the evidence for the association of diastolic blood pressure (DBP) with IS in the Japanese population was not stable. No evidence supported an association between the other traits and IS (all Ps > 0.05) in both races. A positive association was found between SBP and IS in two races, while the results of DBP were only robust in Europeans.

17.
Front Vet Sci ; 11: 1370576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756517

RESUMEN

This study aimed to explore the effects of neonatal vitamin A (VA) supplementation on testis development and spermatogenesis. A total of 32 newborn lambs were intramuscularly injected with corn oil (control group) or corn oil + 2500 IU/kg BW VA (VA group). They were slaughtered and sampled at 3 weeks and 8 months of age to analyze spermatogenesis, cell proliferation, hormone secretion, antioxidant status of the testis, and adult sheep sperm parameters. Compared with the control group, the expression of spermatogonial differentiation-related genes in VA group was up-regulated (P < 0.05). Testis weight, seminiferous tubule diameter, number of spermatogonium and spermatocyte, and sperm density increased significantly in VA group at 8 months of age (P < 0.05). Neonatal VA injection upregulated the expression of the cell proliferation marker PCNA and cell cycle-related genes in the testis (P < 0.05). VA increased the concentrations of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in the serum and upregulated steroidogenesis-related genes in the testis (P < 0.05). The antioxidant levels in the VA group were maintained at high levels. The total antioxidant capacity (T-AOC), antioxidant enzyme content and antioxidant-related genes were increased in the testis (P < 0.05). Furthermore, neonatal VA injection activated retinoic acid (RA) signaling to maintain the blood-testosterone barrier (BTB) in the testis of 3-week-old sheep. AMP-activated protein kinase (AMPK) and protein kinase B (AKT) signaling were also modulated in the sheep testis (P < 0.05). Taken together, VA supplementation in newborn rams promotes testis development and spermatogenesis to improve fertility.

18.
Exp Cell Res ; 439(1): 114072, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719175

RESUMEN

HHATL, previously implicated in cardiac hypertrophy in the zebrafish model, has emerged as a prioritized HCM risk gene. We identified six rare mutations in HHATL, present in 6.94 % of nonsarcomeric HCM patients (5/72). Moreover, a decrease of HHATL in the heart tissue from HCM patients and cardiac hypertrophy mouse model using transverse aortic constriction was observed. Despite this, the precise pathogenic mechanisms underlying HHATL-associated cardiac hypertrophy remain elusive. In this study, we observed that HHATL downregulation in H9C2 cells resulted in elevated expression of hypertrophic markers and reactive oxygen species (ROS), culminating in cardiac hypertrophy and mitochondrial dysfunction. Notably, the bioactive form of SHH, SHHN, exhibited a significant increase, while the mitochondrial fission protein dynamin-like GTPase (DRP1) decreased upon HHATL depletion. Intervention with the SHH inhibitor RU-SKI 43 or DRP1 overexpression effectively prevented Hhatl-depletion-induced cardiac hypertrophy, mitigating disruptions in mitochondrial morphology and membrane potential through the SHH/DRP1 axis. In summary, our findings suggest that HHATL depletion activates SHH signaling, reducing DRP1 levels and thereby promoting the expression of hypertrophic markers, ROS generation, and mitochondrial dysfunction, ultimately leading to cardiac hypertrophy. This study provides additional compelling evidence supporting the association of HHATL with cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Regulación hacia Abajo , Dinaminas , Proteínas Hedgehog , Especies Reactivas de Oxígeno , Dinaminas/metabolismo , Dinaminas/genética , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Especies Reactivas de Oxígeno/metabolismo , Humanos , Regulación hacia Abajo/genética , Transducción de Señal , Ratones , Ratas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética
19.
Br J Pharmacol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804080

RESUMEN

BACKGROUND AND PURPOSE: Insulin and exenatide are two hypoglycaemic agents that exhibit different osteogenic effects. This study compared the differences between exenatide and insulin in osseointegration in a rat model of Type 2 diabetes (T2D) and explored the mechanisms promoting osteogenesis in this model of T2D. EXPERIMENTAL APPROACH: In vivo, micro-CT was used to detect differences in the peri-implant bone microstructure in vivo. Histology, dual-fluorescent labelling, immunofluorescence and immunohistochemistry were used to detect differences in tissue, cell and protein expression around the implants. In vitro, RT-PCR and western blotting were used to measure the expression of osteogenesis- and Wnt signalling-related genes and proteins in bone marrow mesenchymal stromal cells (BMSCs) from rats with T2D (TBMSCs) after PBS, insulin and exenatide treatment. RT-PCR was used to detect the expression of Wnt bypass cascade reactions under Wnt inactivation. KEY RESULTS: Micro-CT and section staining showed exenatide extensively promoted peri-implant osseointegration. Both in vivo and in vitro experiments showed exenatide substantially increased the expression of osteogenesis-related and activated the LRP5/6/GSK-3ß/ß-catenin-related Wnt pathway. Furthermore, exenatide suppressed expression of Bmpr1a to inhibit lipogenesis and promoted expression of Btrc to suppress inflammation. CONCLUSION AND IMPLICATIONS: Compared to insulin, exenatide significantly improved osteogenesis in T2D rats and TBMSCs. In addition to its dependence on LRP5/6/GSK-3ß/ß-catenin signalling for osteogenic differentiation, exenatide-mediated osteomodulation also involves inhibition of inflammation and adipogenesis by BMPR1A and ß-TrCP, respectively.

20.
J Biol Chem ; 300(6): 107335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705394

RESUMEN

Endoplasmic reticulum (ER) stress, a common cellular stress response induced by various factors that interfere with cellular homeostasis, may trigger cell apoptosis. Autophagy is an important and conserved mechanism for eliminating aggregated proteins and maintaining protein stability of cells, which is closely associated with ER stress and ER stress-induced apoptosis. In this paper, we report for the first time that Hhatl, an ER-resident protein, is downregulated in response to ER stress. Hhatl overexpression alleviated ER stress and ER stress induced apoptosis in cells treated with tunicamycin or thapsigargin, whereas Hhatl knockdown exacerbated ER stress and apoptosis. Further study showed that Hhatl attenuates ER stress by promoting autophagic flux. Mechanistically, we found that Hhatl promotes autophagy by associating with autophagic protein LC3 (microtubule-associated protein 1A/1B-light chain 3) via the conserved LC3-interacting region motif. Noticeably, the LC3-interacting region motif was essential for Hhatl-regulated promotion of autophagy and reduction of ER stress. These findings demonstrate that Hhatl ameliorates ER stress via autophagy activation by interacting with LC3, thereby alleviating cellular pressure. The study indicates that pharmacological or genetic regulation of Hhatl-autophagy signaling might be potential for mediating ER stress and related diseases.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Proteínas Asociadas a Microtúbulos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Humanos , Apoptosis/efectos de los fármacos , Células HEK293 , Células HeLa , Tunicamicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA