Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611076

RESUMEN

Cancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I. Furthermore, DBI-1 and a glucose transporter 1 (GLUT1) inhibitor, BAY-876, synergistically inhibited CRC cell growth in vitro and in vivo. We now report a study of the structure-activity relationships (SARs) in the isoflavonoid family in which we identified a new DBI-1 analog, namely, DBI-2, with promising properties. Here, we aimed to explore the antitumor mechanisms of DBIs and to develop new combination strategies by targeting both glycolysis and OXPHOS. We identified DBI-2 as a novel AMPK activator using an AMPK phosphorylation assay as a readout. DBI-2 inhibited mitochondrial complex I in the Seahorse assays. We performed proliferation and Western blotting assays and conducted studies of apoptosis, necrosis, and autophagy to corroborate the synergistic effects of DBI-2 and BAY-876 on CRC cells in vitro. We hypothesized that restricting the carbohydrate uptake with a KD would mimic the effects of GLUT1 inhibitors, and we found that a ketogenic diet significantly enhanced the therapeutic efficacy of DBI-2 in CRC xenograft mouse models, an outcome that suggested a potentially new approach for combination cancer therapy.

2.
Sci Rep ; 14(1): 5959, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472335

RESUMEN

In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Enfermedad de Alzheimer/metabolismo , Proteómica , Complejo 2 de Proteína Adaptadora/metabolismo , Vesículas Extracelulares/metabolismo
3.
Eur J Med Chem ; 265: 116119, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194773

RESUMEN

Peptide-drug conjugates (PDCs) are the new hope for targeted therapy after antibody-drug conjugates (ADCs). Compared with ADCs, the core advantages of PDCs are enhanced tissue penetration, easier chemical synthesis, and lower production costs. Two PDCs have been approved by the US Food and Drug Administration (FDA) for the treatment of cancer. The therapeutic effects of PDCs are remarkable, but PDCs also encounter problems when used as targeted therapeutics, such as poor stability, a short blood circulation time, a long research and development time frame, and a slow clinical development process. Therefore, it is very urgent and important to understand the latest research progress of cancer cells targeting PDC, the solution to its stability problem, the scheme of computer technology to assist its research and development, and the direction of its future development. In this manuscript, based on the structure and function of PDCs, the latest research progress on PDCs from the aspects of cancer cell-targeting peptide (CTP) selection, pharmacokinetic characteristics, stability regulation and so on were systematically reviewed, hoping to highlight the current problems and future development directions of PDCs.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Neoplasias/tratamiento farmacológico , Inmunoconjugados/química
4.
ACS Sens ; 9(2): 849-859, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38271684

RESUMEN

Noble metal nanoparticle (NMP)-based composite substrates have garnered significant attention as a highly promising technique for surface-enhanced Raman scattering (SERS) in diverse scientific disciplines because their remarkable ability to amplify and functionalize Raman signals has positioned them as valuable tools for molecular detection. However, optimizing the size and distribution of NMPs has not received sufficient emphasis because of challenges associated with the precise control of deposition and the modulation of reducing rates during growth. In this research, we achieved the optimized size and spatial patterns of AgNWs on electrospun poly(vinylidene fluoride) (PVDF) nanofibers by utilizing a polydopamine (PDA) layer as a mild and controllable reduction mediator, by which the size and density of the AgNWs could be relatively precisely manipulated, achieving a dense distribution of effective "hot spots". On the other hand, harnessing the inherent piezoelectric properties of the electrospun PVDF nanofibers further boosted the LSPR effect during the SERS test, forming a flexible dual-enhancing composite SERS substrate with excellent sensitivity. In addition to addressing structural aspects, exploiting synergistic systems capable of transferring external energy or forces to enhance the SERS performances presents a compelling avenue to broaden the practical applications of SERS. The dual-enhanced substrate achieved an exceptional enhancement factor (EF) of 1.05 × 108 and a low detection limit (LOD) of 10-10 M during the SERS test. This study focuses on integrating NMPs with electrospun piezoelectric polymer nanofibers to develop a dual-enhancing SERS substrate with excellent sensitivity and practicality. The findings provide valuable insights into controllably depositing NMPs on electrospun polymer fibers and hold significant implications for the development of highly sensitive and practical SERS substrates across various applications.


Asunto(s)
Polímeros de Fluorocarbono , Nanopartículas del Metal , Nanofibras , Polivinilos , Nanofibras/química , Nanopartículas del Metal/química , Plata/química , Polímeros
5.
Int J Nanomedicine ; 18: 7173-7181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076734

RESUMEN

Introduction: The monkeypox (Mpox) virus epidemic presents a significant risk to global public health security. A35R, a crucial constituent of EEV, plays a pivotal role in virus transmission, serves as a vital target for vaccine development, and has potential for serological detection. Currently, there is a dearth of research on nanobodies targeting A35R. The purpose of this study is to identify specific nanobodies target A35R, so as to provide new antibody candidates for Mpox vaccine development and diagnostic kit development. Methods: Three nanobodies specific to the monkeypox virus protein A35R were screened from a naïve phage display library. After four rounds of panning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA). Further, the nanobody fusion protein was constructed in pNFCG1-IgG1-Fc vector and expressed in HEK293F cells and purified by affinity chromatography. The specificity and affinity of the nanobodies were identified by ELISA. The binding kinetics of the VHH antibody to A35R were assessed via employment of a bio-layer interferometry (BLI) apparatus, thereby determining the nanobodies affinity. Results: The three purified nanobodies showed specific high-affinity binding MPXV A35R, of them, VHH-1 had the best antigen binding affinity (EC50 = 0.010 ug/mL). In addition, VHH-1 on Protein A biosensor can bind Mpox virus A35R, with an affinity constant of 54 nM as determined in BLI assay. Conclusion: In sum, we has obtained three nanobody strains against Mpox virus A35R with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of Mpox virus.


Asunto(s)
Bacteriófagos , Mpox , Anticuerpos de Dominio Único , Humanos , Monkeypox virus , Anticuerpos de Dominio Único/química , Técnicas de Visualización de Superficie Celular , Ensayo de Inmunoadsorción Enzimática/métodos
6.
Foods ; 12(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444207

RESUMEN

The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.

7.
Microbes Infect ; 25(8): 105180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37419238

RESUMEN

Although gut dysbiosis contributes to systemic inflammation, the counteractive effect of systemic inflammation on gut microbiota is unknown. Vitamin D may exert anti-inflammatory effects against systemic inflammation, but its regulation of the gut microbiota is poorly understood. In this study, mice were intraperitoneally injected with lipopolysaccharide (LPS) to create a systemic inflammation model and received vitamin D3 treatment orally for 18 continuous days. Then, body weight, morphological changes in the colon epithelium, and gut microbiota (n = 3) were evaluated. We verified that LPS stimulation caused inflammatory changes in the colon epithelium, which could be obviously attenuated by vitamin D3 treatment (10 µg/kg/day) in mice. Then, 16S rRNA gene sequencing of the gut microbiota first revealed that LPS stimulation induced a large number of operational taxonomic units, and vitamin D3 treatment reduced the number. In addition, vitamin D3 had distinctive effects on the community structure of the gut microbiota, which was obviously changed after LPS stimulation. However, neither LPS nor vitamin D3 affected the alpha and beta diversity of the gut microbiota. Furthermore, statistical analysis of differential microorganisms showed that the relative abundance of microorganisms in the phylum Spirochaetes decreased, the family Micrococcaceae increased, the genus [Eubacterium]_brachy_group decreased, the genus Pseudarthrobacter increased, and the species Clostridiales_bacterium_CIEAF_020 decreased under LPS stimulation, but vitamin D3 treatment significantly reversed the LPS-induced changes in the relative abundance of these microorganisms. In conclusion, vitamin D3 treatment affected the gut microbiota and alleviated inflammatory changes in the colon epithelium in the LPS-stimulated systemic inflammation mouse model.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , Lipopolisacáridos , Colecalciferol/farmacología , ARN Ribosómico 16S/genética , Inflamación , Bacterias
8.
Genomics ; 115(5): 110666, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315874

RESUMEN

Although high-throughput, cancer cell-line screening is a time-honored, important tool for anti-cancer drug development, this process involves the testing of each, individual drug in each, individual cell-line. Despite the availability of robotic liquid handling systems, this process remains a time-consuming and costly investment. The Broad Institute developed a new method called Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) to screen a mixture of barcoded, tumor cell-lines. Although this methodology significantly improved the efficiency of screening large numbers of cell-lines, the barcoding process itself was tedious that requires gene transfection and subsequent selection of stable cell-lines. In this study, we developed a new, genomic approach for screening multiple cancer cell-lines using endogenous "tags" that did not require prior barcoding: single nucleotide polymorphism-based, mixed-cell screening (SMICS). The code for SMICS is available at https://github.com/MarkeyBBSRF/SMICS.


Asunto(s)
Antineoplásicos , Polimorfismo de Nucleótido Simple , Línea Celular Tumoral , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Neuroscience ; 526: 85-96, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37352968

RESUMEN

Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. The effects of lower, normal, and higher dosages (1, 10 and 100 µg/kg/day) of vitamin D3 on behavioral and neuromorphological changes, brain inflammatory factors, Sirt6 and H3K9ac levels, and microglial Sirt6 distribution in hippocampus were evaluated in lipopolysaccharide (LPS)-stimulated mice. In addition, the effects of vitamin D3 on inflammatory factors, reactive oxygen species, Sirt6, and H3K9ac were confirmed in LPS-stimulated BV-2 cells. We verified that vitamin D3 ameliorated the impaired sociability of LPS-stimulated mice by three-chamber test. In addition, vitamin D3 upregulated brain Sirt6 generation, reduced H3K9ac levels and inhibited generation of brain inflammatory factors. Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.


Asunto(s)
Inflamación , Sirtuinas , Ratones , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Microglía/metabolismo , Regulación hacia Arriba , Enfermedades Neuroinflamatorias , Colecalciferol/farmacología , Colecalciferol/metabolismo , Sirtuinas/metabolismo
10.
Mol Nutr Food Res ; 67(14): e2200885, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37160728

RESUMEN

SCOPE: Mitochondrial DNA (mtDNA) released into the cytosol serves as a member of damage-associated molecular patterns to initiate inflammatory responses. Mangiferin is a xanthonoid derivative, usually isolated from plants including mangoes and iris unguicularis. This study aims to investigate whether mangiferin prevents mtDNA accumulation in the cytosol with a focus on deoxyribonuclease 2 (DNase 2) protection from oxidative damage. METHODS AND RESULTS: Mangiferin administration effectively protects against hepatotoxicity in mice subjected to CCl4 challenge or bile duct ligation (BDL) surgery. Moreover, mangiferin activates nuclear factor erythroid 2-related factor (Nrf2)-antioxidant signaling, reduces cytosolic mtDNA accumulation, and suppresses Toll-like receptor 9 (TLR-9)/myeloid differentiation factor 88 (MyD88)-dependent inflammation in the liver. The study prepares hepatic mtDNA to stimulate hepatocytes, and finds that mangiferin protects DNase 2 protein abundance. mtDNA induces reactive oxygen species (ROS) production to promote DNase 2 protein degradation through oxidative modification, but mangiferin protects DNase 2 protein stability in a Nrf2-dependent manner. In hepatic Nrf2 deficiency mice, the study further confirms that Nrf2 induction is required for mangiferin to clear cytosolic mtDNA and block mtDNA-mediated TLR9/MyD88/nuclear factor kappa-B (NF-κB) inflammatory signaling cascades. CONCLUSION: These findings provide new insights into the role of mangiferin as a liver protecting agent, and suggest protection of DNase 2 as a novel therapeutic strategy for pharmacological intervention to prevent liver damage.


Asunto(s)
ADN Mitocondrial , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Citosol/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/farmacología
11.
Cells ; 12(7)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37048139

RESUMEN

The deregulation in the Wnt/ß-catenin signaling pathway is associated with many human cancers, particularly colorectal cancer (CRC) and, therefore, represents a promising target for drug development. We have screened over 300 semisynthetic and natural compounds using a Wnt reporter assay and identified a family of novel chalcone derivatives (CXs) that inhibited Wnt signaling and CRC cell proliferation. Among them, we selected CX258 for further in vitro and in vivo study to investigate the molecular mechanisms. We found that CX258 significantly inhibited ß-catenin expression and nuclear translocation, inducing cell cycle arrest at the G2/M phase in CRC cells. Additionally, CX258 reduced the expression of DNA Topoisomerase II alpha (TOP2A) in CRC cells. Moreover, knocking down TOP2A by siRNAs inhibited the Wnt/ß-catenin signaling pathway, a finding suggesting that CX258 inhibited Wnt/ß-catenin signaling and CRC cell proliferation at least partially by modulating TOP2A. Further studies showed that CDK1 that interacts with TOP2A was significantly reduced after TOP2A knockdown. We demonstrated that CX258 significantly inhibited DLD-1 CRC cell xenografts in SCID mice. In summary, we identified CX258 as a promising candidate for colorectal cancer treatment by targeting the TOP2A/Wnt/ß-catenin signaling pathway.


Asunto(s)
Chalconas , Neoplasias Colorrectales , Animales , Ratones , Humanos , Vía de Señalización Wnt/genética , Chalconas/farmacología , Chalconas/uso terapéutico , beta Catenina/metabolismo , Ratones SCID , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo
12.
Chin Med ; 17(1): 137, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510253

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia is an aggressive neoplasm and seriously threatens human health. A14 is one kind of semisynthetic aurone that exhibits the capability to inhibit prostate cancer, but little is known about the role of A14 on T-cell acute lymphoblastic leukemia. METHODS: Firstly, the effects of A14 on the ability of leukemia cells to proliferate were measured by Vi-cell counter. Then, we detected the cell cycle and apoptosis by flow cytometry and characterized the related protein expression using immunoblotting. In addition, we constructed stable luciferase expressing cell lines for use in a cell derived xenograft mouse model to measure the effect of A14 on T-cell acute lymphoblastic leukemia. RESULTS: Results exhibited that A14 markedly suppressed cell proliferation and induced G2/M phase arrest along with cell cycles regulating proteins changes. A14 led to apoptosis in leukemia cells, at least partly, through the cytochrome c signaling pathway. Experiments in cell derived xenograft mouse model also showed that A14 markedly ameliorated the survival rate. CONCLUSIONS: The present study revealed that semisynthetic aurones A14 can effectively protect against T-cell acute lymphoblastic leukemia progression both in vitro and in vivo, indicating the capability of A14 as a promising drug for the treatment of T-cell acute lymphoblastic leukemia.

13.
Front Pharmacol ; 13: 961154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091808

RESUMEN

Background: Due to the constant mutation of virus and the lack of specific therapeutic drugs, the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a huge threat to the health of people, especially those with underlying diseases. Therefore, drug discovery against the SARS-CoV-2 remains of great significance. Methods: With the main protease of virus as the inhibitor target, 9,614 genistein derivatives were virtually screened by LeDock and AutoDock Vina, and the top 20 compounds with highest normalized scores were obtained. Molecular dynamics simulations were carried out for studying interactions between these 20 compounds and the target protein. The drug-like properties, activity, and ADMET of these compounds were also evaluated by DruLiTo software or online server. Results: Twenty compounds, including compound 11, were screened by normalized molecular docking, which could bind to the target through multiple non-bonding interactions. Molecular dynamics simulation results showed that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had the best binding force with the target protein of SARS-CoV-2, and the absolute values of binding free energies all exceeded 50 kJ/mol. The drug-likeness properties indicated that a variety of compounds including compound 11 were worthy of further study. The results of bioactivity score prediction found that compounds 11 and 12 had high inhibitory activities against protease, which indicated that these two compounds had the potential to be further developed as COVID-19 inhibitors. Finally, compound 11 showed excellent predictive ADMET properties including high absorption and low toxicity. Conclusion: These in silico work results show that the preferred compound 11 (ZINC000111282222), which exhibited strong binding to SARS-CoV-2 main protease, acceptable drug-like properties, protease inhibitory activity and ADMET properties, has great promise for further research as a potential therapeutic agent against COVID-19.

14.
Mol Cancer Ther ; 21(5): 740-750, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247917

RESUMEN

Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.


Asunto(s)
Neoplasias del Colon , Humanos , Adenosina Trifosfato , Línea Celular Tumoral , Transformación Celular Neoplásica , Neoplasias del Colon/tratamiento farmacológico , Glucosa , Transportador de Glucosa de Tipo 1/genética , Glucólisis , Pirazoles , Quinolinas , Factores de Transcripción
15.
Mol Cancer Ther ; 20(10): 1893-1903, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376582

RESUMEN

Developing effective treatments for colorectal cancers through combinations of small-molecule approaches and immunotherapies present intriguing possibilities for managing these otherwise intractable cancers. During a broad-based, screening effort against multiple colorectal cancer cell lines, we identified indole-substituted quinolines (ISQ), such as N7,N7 -dimethyl-3-(1-methyl-1H-indol-3-yl)quinoline-2,7-diamine (ISQ-1), as potent in vitro inhibitors of several cancer cell lines. We found that ISQ-1 inhibited Wnt signaling, a main driver in the pathway governing colorectal cancer development, and ISQ-1 also activated adenosine monophosphate kinase (AMPK), a cellular energy-homeostasis master regulator. We explored the effect of ISQs on cell metabolism. Seahorse assays measuring oxygen consumption rate (OCR) indicated that ISQ-1 inhibited complex I (i.e., NADH ubiquinone oxidoreductase) in the mitochondrial, electron transport chain (ETC). In addition, ISQ-1 treatment showed remarkable synergistic depletion of oncogenic c-Myc protein level in vitro and induced strong tumor remission in vivo when administered together with BI2536, a polo-like kinase-1 (Plk1) inhibitor. These studies point toward the potential value of dual drug therapies targeting the ETC and Plk-1 for the treatment of c-Myc-driven cancers.


Asunto(s)
Amodiaquina/análogos & derivados , Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Sinergismo Farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pteridinas/farmacología , Amodiaquina/farmacología , Animales , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
16.
Food Funct ; 11(10): 8837-8851, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32969440

RESUMEN

Adipose dysfunction is closely associated with alcoholic liver disease. The impact of mangiferin on ethanol-induced liver injury and the probable underlying molecular mechanism has not been sufficiently addressed. In the present study, mice were subjected to a chronic plus a single binge ethanol feeding to induce liver injury. In addition, the differentiated adipocytes from primary mouse adipocytes were isolated and used for the mechanism studies. Our study demonstrated that mangiferin protects against ethanol induced adipose hyperlipolysis by restoring PDE3B stability, which is associated with activating the AMPK/TBK1 signaling and suppressing the noncanonical NF-κB activation, leading to the reduction of free fatty acid release and the amelioration of ethanol-induced liver injury. Our findings identify that mangiferin ameliorates alcoholic liver injury via suppression of inflammation-induced adipose hyperlipolysis, suggesting that mangiferin might be a potential effective agent for the management of alcoholic liver injury.


Asunto(s)
Tejido Adiposo/metabolismo , Lipólisis/efectos de los fármacos , Hepatopatías Alcohólicas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Xantonas/farmacología , Adipocitos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Etanol/efectos adversos , Inflamación , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 9(1): 6439, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015569

RESUMEN

Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC50 values below 100 nM. A xenograft study in nude mice using 10 mg/kg of 5a had no effect on mice weight, and aurone 5a did not inhibit, as desired, the human ether-à-go-go-related (hERG) potassium channel. Cell cycle arrest data, comparisons of the inhibition of cancer cell proliferation by aurones and known antineoplastic agents, and in vitro inhibition of tubulin polymerization indicated that aurone 5a disrupted tubulin dynamics. Based on molecular docking and confirmed by liquid chromatography-electrospray ionization-tandem mass spectrometry studies, aurone 5a targets the colchicine-binding site on tubulin. In addition to solid tumors, aurones 5a and 5b strongly inhibited in vitro a panel of human leukemia cancer cell lines and the in vivo myc-induced T cell acute lymphoblastic leukemia (T-ALL) in a zebrafish model.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Neoplasias de la Próstata , Multimerización de Proteína/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Pez Cebra/metabolismo , Animales , Benzofuranos/síntesis química , Benzofuranos/química , Benzofuranos/farmacología , Sitios de Unión , Colchicina , Humanos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Medchemcomm ; 9(1): 87-99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527286

RESUMEN

Fluorinated, phenylethynyl-substituted heterocycles that possessed either an N-methylamino or N,N-dimethylamino group attached to heterocycles including pyridines, indoles, 1H-indazoles, quinolines, and isoquinolines inhibited the proliferation of LS174T colon cancer cells in which the inhibition of cyclin D1 and induction of the cyclin-dependent kinase inhibitor-1 (i.e., p21Wif1/Cip1) served as a readout for antineoplastic activity at a cellular level. On a molecular level, these agents, particularly 4-((2,6-difluorophenyl)ethynyl)-N-methylisoquinolin-1-amine and 4-((2,6-difluorophenyl)ethynyl)-N,N-dimethylisoquinolin-1-amine, bound and inhibited the catalytic subunit of methionine S-adenosyltransferase-2 (MAT2A).

19.
Transplantation ; 91(9): 961-7, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21364498

RESUMEN

BACKGROUND: Donor hearts are subjected to ischemia-reperfusion injury during transplantation. Recombinant human neuregulin (rhNRG)-1 peptide attenuates myocardial injury in various animal models of cardiomyopathy. Supplementing the organ-storage solution, Celsior (C), with glyceryl trinitrate (GTN) and cariporide improves cardiac preservation after hypothermic storage. We hypothesized that the addition of rhNRG-1 to C would improve cardiac preservation after hypothermic storage and provide incremental benefit in combination with GTN and cariporide. METHODS: An isolated working rat heart model was used. To assess the effect of rhNRG-1, hearts were stored for 6 hr at 4°C in C ± rhNRG-1 (14 nM). To assess the effect of using a combination of prosurvival kinase activators on cardiac preservation, the ischemic storage time was extended to 10 hr and hearts stored in C ± rhNRG-1 (14 nM) ± GTN (0.1 mg/mL) ± Cariporide (10 µM). Hearts were subsequently reperfused, cardiac function remeasured, and tissue collected for protein analysis and immunohistochemistry. Optimal timing of rhNRG-1 administration was also assessed. RESULTS: rhNRG-1 supplemented C improved functional recovery after 6 hr of storage (cardiac output recovery [mean ± SEM]: control 1.4% ± 0.6%; rhNRG-1+C 21.1% ± 7.9%; P<0.05). After 10-hr storage, no improvement in functional recovery was observed with rhNRG-1, GTN, or cariporide alone; however, GTN combined with cariporide did improve recovery (P<0.01), which was further enhanced by the addition of rhNRG-1 (P<0.01). Functional improvements were accompanied by increased phosphorylation of Akt, ERK1/2, STAT3, and GSK-3ß and reduced cleaved caspase-3 (P<0.01). CONCLUSIONS: rhNRG-1 given together with other activators of prosurvival pathways improves preservation of the rat heart and shows promise for increasing the cold-ischemic life of donor hearts in transplantation.


Asunto(s)
Corazón , Neurregulina-1/farmacología , Preservación de Órganos/métodos , Animales , Apoptosis/efectos de los fármacos , Gasto Cardíaco , Isquemia Fría , Disacáridos , Electrólitos , Glutamatos , Glutatión , Guanidinas , Trasplante de Corazón/patología , Trasplante de Corazón/fisiología , Histidina , Humanos , Técnicas In Vitro , Masculino , Manitol , Modelos Animales , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neurregulina-1/administración & dosificación , Nitroglicerina , Soluciones Preservantes de Órganos , Ratas , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonas , Factores de Tiempo
20.
Eur J Heart Fail ; 13(1): 83-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20810473

RESUMEN

AIMS: Neuregulin-1 (NRG-1) plays a critical role in the adaptation of the heart to injury, inhibiting apoptosis and inducing cardiomyocyte proliferation. We have shown previously that rhNRG-1 improves cardiac function and survival in animal models of cardiomyopathy. Here we report the first human study aimed at exploring the acute and chronic haemodynamic responses to recombinant human NRG-1 (beta(2a) isoform; rhNRG-1) in patients with stable chronic heart failure (CHF). METHODS AND RESULTS: Fifteen patients (age, 60 ± 2; NYHA II:III, 9:6; left ventricular ejection fraction (LVEF) <40%) on optimal medical therapy for CHF, received a rhNRG-1 infusion daily for 11 days. Acute and chronic haemodynamic, structural and biochemical effects were determined by serial right heart catheterization, cardiac magnetic resonance (CMR), echocardiography and measurement of neurohumoral indices. Acutely, cardiac output increased by 30% during a 6 h rhNRG-1 infusion (P < 0.01). Pulmonary artery wedge pressure and systemic vascular resistance decreased 30 and 20%, respectively, at 2 h (P < 0.01). A 47% reduction in serum noradrenaline, a 55% reduction in serum aldosterone and a 3.6-fold increase in N-terminal prohormone brain natriuretic peptide levels were concurrently observed (P < 0.001). These acute haemodynamic effects were sustained, as demonstrated by the 12% increase in LVEF from 32.2 ± 2.0% (baseline) to 36.1 ± 2.3% (mean ± SE, P < 0.001) at 12 weeks. The therapy was well tolerated. CONCLUSION: rhNRG-1 appears to produce favourable acute and chronic haemodynamic effects in patients with stable CHF on optimal medical therapy. Randomized controlled trials of rhNRG-1 in cardiac disease are thus warranted. Clinical Trial Registration Information The trial was registered with the Australian New Zealand Clinical Trials Registry, anzctr.org.au Identifier: ACTRN12607000330448.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Hemodinámica/efectos de los fármacos , Infusiones Parenterales , Neurregulina-1/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Enfermedad Aguda , Análisis de Varianza , Biomarcadores/sangre , Enfermedad Crónica , Progresión de la Enfermedad , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Humanos , Inflamación/sangre , Masculino , Persona de Mediana Edad , Neurregulina-1/uso terapéutico , Presión Esfenoidal Pulmonar/efectos de los fármacos , Proteínas Recombinantes/uso terapéutico , Volumen Sistólico/efectos de los fármacos , Resultado del Tratamiento , Ultrasonografía , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...