Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Nanobiotechnology ; 21(1): 194, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322478

RESUMEN

BACKGROUND: Polarization of microglia, the resident retinal immune cells, plays important roles in mediating both injury and repair responses post-retinal ischemia-reperfusion (I/R) injury, which is one of the main pathological mechanisms behind ganglion cell apoptosis. Aging could perturb microglial balances, resulting in lowered post-I/R retinal repair. Young bone marrow (BM) stem cell antigen 1-positive (Sca-1+) cells have been demonstrated to have higher reparative capabilities post-I/R retinal injury when transplanted into old mice, where they were able to home and differentiate into retinal microglia. METHODS: Exosomes were enriched from young Sca-1+ or Sca-1- cells, and injected into the vitreous humor of old mice post-retinal I/R. Bioinformatics analyses, including miRNA sequencing, was used to analyze exosome contents, which was confirmed by RT-qPCR. Western blot was then performed to examine expression levels of inflammatory factors and underlying signaling pathway proteins, while immunofluorescence staining was used to examine the extent of pro-inflammatory M1 microglial polarization. Fluoro-Gold labelling was then utilized to identify viable ganglion cells, while H&E staining was used to examine retinal morphology post-I/R and exosome treatment. RESULTS: Sca-1+ exosome-injected mice yielded better visual functional preservation and lowered inflammatory factors, compared to Sca-1-, at days 1, 3, and 7 days post-I/R. miRNA sequencing found that Sca-1+ exosomes had higher miR-150-5p levels, compared to Sca-1- exosomes, which was confirmed by RT-qPCR. Mechanistic analysis found that miR-150-5p from Sca-1+ exosomes repressed the mitogen-activated protein kinase kinase kinase 3 (MEKK3)/JNK/c-Jun axis, leading to IL-6 and TNF-α downregulation, and subsequently reduced microglial polarization, all of which contributes to reduced ganglion cell apoptosis and preservation of proper retinal morphology. CONCLUSION: This study elucidates a potential new therapeutic approach for neuroprotection against I/R injury, via delivering miR-150-5p-enriched Sca-1+ exosomes, which targets the miR-150-5p/MEKK3/JNK/c-Jun axis, thereby serving as a cell-free remedy for treating retinal I/R injury and preserving visual functioning.


Asunto(s)
Exosomas , MicroARNs , Daño por Reperfusión , Ratones , Animales , Microglía/metabolismo , MicroARNs/metabolismo , Exosomas/metabolismo , Daño por Reperfusión/metabolismo , Células de la Médula Ósea/metabolismo
3.
Hortic Res ; 6: 100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31666961

RESUMEN

Heat stress is a serious and widespread threat to the quality and yield of many crop species, including grape (Vitis vinifera L.), which is cultivated worldwide. Here, we conducted phosphoproteomic and acetylproteomic analyses of leaves of grape plants cultivated under four distinct temperature regimes. The phosphorylation or acetylation of a total of 1011 phosphoproteins with 1828 phosphosites and 96 acetyl proteins with 148 acetyl sites changed when plants were grown at 35 °C, 40 °C, and 45 °C in comparison with the proteome profiles of plants grown at 25 °C. The greatest number of changes was observed at the relatively high temperatures. Functional classification and enrichment analysis indicated that phosphorylation, rather than acetylation, of serine/arginine-rich splicing factors was involved in the response to high temperatures. This finding is congruent with previous observations by which alternative splicing events occurred more frequently in grapevine under high temperature. Changes in acetylation patterns were more common than changes in phosphorylation patterns in photosynthesis-related proteins at high temperatures, while heat-shock proteins were associated more with modifications involving phosphorylation than with those involving acetylation. Nineteen proteins were identified with changes associated with both phosphorylation and acetylation, which is consistent with crosstalk between these posttranslational modification types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...