Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Gut ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38458750

RESUMEN

OBJECTIVE: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS: Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION: Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.

2.
CNS Neurosci Ther ; 30(2): e14628, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421138

RESUMEN

AIMS: Neurogenic bladder (NB) is a prevalent and debilitating consequence of spinal cord injury (SCI). Indeed, the accurate prognostication of early bladder outcomes is crucial for patient counseling, rehabilitation goal setting, and personalized intervention planning. METHODS: A retrospective exploratory analysis was conducted on a cohort of consecutive SCI patients admitted to a rehabilitation facility in China from May 2016 to December 2022. Demographic, clinical, and electrophysiological data were collected within 40 days post-SCI, with bladder outcomes assessed at 3 months following SCI onset. RESULTS: The present study enrolled 202 SCI patients with a mean age of 40.3 ± 12.3 years. At 3 months post-SCI, 79 participants exhibited complete bladder emptying. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analyses identified the H-reflex of the soleus muscle, the American Spinal Injury Association Lower Extremity Motor Score (ASIA-LEMS), and the time from lesion to rehabilitation facility (TLRF) as significant independent predictors for bladder emptying. A scoring system named HALT was developed, yielding a strong discriminatory performance with an area under the receiver operating characteristics curve (aROC) of 0.878 (95% CI: 0.823-0.933). A simplified model utilizing only the H-reflex exhibited excellent discriminatory ability with an aROC of 0.824 (95% CI: 0.766-0.881). Both models demonstrated good calibration via the Hosmer-Lemeshow test and favorable clinical net benefits through decision curve analysis (DCA). In comparison to ASIA-LEMS, both the HALT score and H-reflex showed superior predictive accuracy for bladder outcome. Notably, in individuals with incomplete injuries, the HALT score (aROC = 0.973, 95% CI: 0.940-1.000) and the H-reflex (aROC = 0.888, 95% CI: 0.807-0.970) displayed enhanced performance. CONCLUSION: Two reliable models, the HALT score and the H-reflex, were developed to predict bladder outcomes as early as 3 months after SCI onset. Importantly, this study provides hitherto undocumented evidence regarding the predictive significance of the soleus H-reflex in relation to bladder outcomes in SCI patients.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/terapia , Músculo Esquelético , Curva ROC
3.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398629

RESUMEN

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Estrofantidina , Humanos , Estrofantidina/farmacología , Caspasa 3/farmacología , Línea Celular Tumoral , Apoptosis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
5.
Gut ; 72(11): 2149-2163, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549980

RESUMEN

OBJECTIVE: Selecting interventions for patients with solitary hepatocellular carcinoma (HCC) remains a challenge. Despite gross classification being proposed as a potential prognostic predictor, its widespread use has been restricted due to inadequate studies with sufficient patient numbers and the lack of established mechanisms. We sought to investigate the prognostic impacts on patients with HCC of different gross subtypes and assess their corresponding molecular landscapes. DESIGN: A prospective cohort of 400 patients who underwent hepatic resection for solitary HCC was reviewed and analysed and gross classification was assessed. Multiomics analyses were performed on tumours and non-tumour tissues from 49 patients to investigate the mechanisms underlying gross classification. Inverse probability of treatment weight (IPTW) was used to control for confounding factors. RESULTS: Overall 3-year survival rates varied significantly among the four gross subtypes (type I: 91%, type II: 80%, type III: 74.6%, type IV: 38.8%). Type IV was found to be independently associated with poor prognosis in both the entire cohort and the IPTW cohort. The four gross subtypes exhibited three distinct transcriptional modules. Particularly, type IV tumours exhibited increased angiogenesis and immune score as well as decreased metabolic pathways, together with highest frequency of TP53 mutations. Patients with type IV HCC may benefit from adjuvant intra-arterial therapy other than the other three subtypes. Accordingly, a modified trichotomous margin morphological gross classification was established. CONCLUSION: Different gross types of HCC showed significantly different prognosis and molecular characteristics. Gross classification may aid in development of precise individualised diagnosis and treatment strategies for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Estudios Prospectivos , Multiómica , Pronóstico
6.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175463

RESUMEN

The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4'-pyrene-2,2':6',2''-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Células A549 , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Fosforilación Oxidativa , Células HEK293 , Proteómica , Necrosis , Apoptosis , ADN/metabolismo , Adenosina Trifosfato/metabolismo , Rutenio/farmacología , Complejos de Coordinación/farmacología
7.
Medicine (Baltimore) ; 101(38): e30678, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36197270

RESUMEN

Hepatocellular carcinoma (HCC) is still a significant global health problem. The development of bioinformatics may provide the opportunities to identify novel therapeutic targets. This study bioinformatically identified the differentially expressed genes (DEGs) in HCC and associated them with HCC prognosis using data from published databases. The DEGs downloaded from the Gene Expression Omnibus (GEO) website were visualized using the Venn diagram software, and then subjected to the GO and KEGG analyses, while the protein-protein interaction network was analyzed using Cytoscape software with the Search Tool for the search tool for the retrieval of interacting genes and the molecular complex detection plug-in. Kaplan-Meier curves and the log rank test were used to associate the core PPI network genes with the prognosis. There were 57 upregulated and 143 downregulated genes in HCC samples. The GO and pathway analyses revealed that these DEGs are involved in the biological processes (BPs), molecular functions (MFs), and cell components (CCs). The PPI network covered 50 upregulated and 108 downregulated genes, and the core modules of this PPI network contained 34 upregulated genes. A total of 28 of these upregulated genes were associated with a poor HCC prognosis, 27 of which were highly expressed in HCC tissues. This study identified 28 DEGs to be associated with a poor HCC prognosis. Future studies will investigate their possible applications as prognostic biomarkers and potential therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Pronóstico
8.
Front Pharmacol ; 13: 939483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034815

RESUMEN

Descurainia sophia seeds (DS), Astragalus mongholicus (AM), and their formulas are widely used to treat heart failure caused by various cardiac diseases in traditional Chinese medicine practice. However, the molecular mechanism of action of DS and AM has not been completely understood. Herein, we first used mass spectrometry coupled to UPLC to characterize the chemical components of DS and AM decoctions, then applied MS-based quantitative proteomic analysis to profile protein expression in the heart of rats with isoproterenol-induced cardiomyopathy (ISO-iCM) before and after treated with DS alone or combined with AM, astragaloside IV (AS4), calycosin-7-glucoside (C7G), and Astragalus polysaccharides (APS) from AM. We demonstrated for the first time that DS decoction alone could reverse the most of differentially expressed proteins in the heart of the rats with ISO-iCM, including the commonly recognized biomarkers natriuretic peptides (NPPA) of cardiomyopathy and sarcomeric myosin light chain 4 (MYL4), relieving ISO-iCM in rats, but AM did not pronouncedly improve the pharmacological efficiency of DS. Significantly, we revealed that AS4 remarkably promoted the pharmacological potency of DS by complementarily reversing myosin motor MYH6/7, and further downregulating NPPA and MYL4. In contrast, APS reduced the efficiency of DS due to upregulating NPPA and MYL4. These findings not only provide novel insights to better understanding in the combination principle of traditional Chinese medicine but also highlight the power of mass spectrometric proteomics strategy combined with conventional pathological approaches for the traditional medicine research.

9.
Cancer Cell Int ; 22(1): 224, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790992

RESUMEN

Bioactive lipid molecules have been proposed to play important roles linking obesity/metabolic syndrome and cancers. Studies reveal that aberrant lipid metabolic signaling can reprogram cancer cells and non-cancer cells in the tumor microenvironment, contributing to cancer initiation, progression, metastasis, recurrence, and poor therapeutic response. Existing evidence indicates that controlling lipid metabolism can be a potential strategy for cancer prevention and therapy. By reviewing the current literature on the lipid metabolism in various cancers, we summarized major lipid molecules including fatty acids and cholesterol as well as lipid droplets and discussed their critical roles in cancer cells and non-cancer in terms of either promoting- or anti-tumorigenesis. This review provides an overview of the lipid molecules in cellular entities and their tumor microenvironment, adding to the existing knowledge with lipid metabolic reprogramming in immune cells and cancer associated cells. Comprehensive understanding of the regulatory role of lipid metabolism in cellular entities and their tumor microenvironment will provide a new direction for further studies, in a shift away from conventional cancer research. Exploring the lipid-related signaling targets that drive or block cancer development may lead to development of novel anti-cancer strategies distinct from traditional approaches for cancer prevention and treatment.

10.
Nucleic Acids Res ; 50(6): 3070-3082, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258624

RESUMEN

Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, applying MS proteomics strategy, we revealed PDS significantly downregulated 22 proteins but upregulated 16 proteins in HeLa cancer cells, of which the genes both contain a number of G4 potential sequences, implying that PDS regulation on gene expression is far more complicated than inducing/stabilizing G4 structures. The PDS-downregulated proteins consequently upregulated 6 proteins to activate cyclin and cell cycle regulation, suggesting that PDS itself is not a potential anticancer agent, at least toward HeLa cancer cells. Importantly, SUB1, which encodes human positive cofactor and DNA lesion sensor PC4, was downregulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) toward HeLa cells to a similar level of cisplatin, contributable to retarding the repair of 1,3-trans-PtTz crosslinked DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Aminoquinolinas , Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Cisplatino/farmacología , ADN/química , Células HeLa , Humanos , Ácidos Picolínicos
11.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209223

RESUMEN

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Asunto(s)
Flavonoides/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Flavonoides/administración & dosificación , Flavonoides/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Mapeo de Interacción de Proteínas
12.
Int J Biol Sci ; 17(10): 2576-2589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326695

RESUMEN

Background: Nonalcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease (NAFLD) and a potential precursor of hepatocellular carcinoma (HCC). In our previous studies, we found that endocrine fibroblast growth factor 21 (FGF21) played a key role in preventing the development of NASH, however, the FGF15/19 mediated-FGFR4 signaling worsened NASH and even contributed to the NASH-HCC transition. The aim of this study is to determine whether FGF15/FGFR4 signaling could alleviate or aggravate NASH in the FGF21KO mice. Methods: NASH models were established in FGF21KO mice fed with high fat methionine-choline deficient (HFMCD) diet to investigate FGF15/FGFR4 signaling during early stage NASH and advanced stage NASH. Human hepatocytes, HepG2 and Hep3B cells, were cultured with human enterocytes Caco-2 cells to mimic gut-liver circulation to investigate the potential mechanism of NASH development. Results: Significant increase of FGF15 production was found in the liver of the NASH-FGF21KO mice, however the increased FGF15 protein was unable to alleviate hepatic lipid accumulation. In contrast, up-regulated FGF15/19/FGFR4 signaling was found in the FGF21KO mice with increased NASH severity, as evident by hepatocyte injury/repair, fibrosis and potential malignant events. In in vitro studies, blockage of FGFR4 by BLU9931 treatment attenuated the lipid accumulation, up-regulated cyclin D1, and epithelial-mesenchymal transition (EMT) in the hepatocytes. Conclusion: The increased FGF15 in NASH-FGF21KO mice could not substitute for FGF21 to compensate its lipid metabolic benefits thereby to prevent NASH development. Up-regulated FGFR4 signaling in NASH-FGF21KO mice coupled to proliferation and EMT events which were widely accepted to be associated with carcinogenic transformation.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Acrilamidas/farmacología , Animales , Células CACO-2 , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Quinazolinas/farmacología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética
13.
Chem Biol Interact ; 344: 109500, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33989594

RESUMEN

As the sixth most prevalent cancer, liver cancer has been reported as the second cause of cancer-induced deaths globally. Lysionotin, a flavonoid compound widely distributed in Lysionotus pauciflorus Maxim, has attracted considerable attention due to its multiple biological activities. The present study analyzes the anti-liver cancer effects of lysionotin in cells and mouse models. In HepG2 and SMMC-7721 cells, lysionotin significantly reduced the viability of cells, inhibited cell proliferation and migration, enhanced cell apoptosis, promoted the increase of intracellular reactive oxygen species (ROS) levels, decreased mitochondrial membrane potential (MMP), and alternated the content of apoptosis-related proteins. In HepG2-and SMMC-7721-xenograft tumor mouse models, lysionotin inhibited tumor growth, reduced the expression levels of anti-apoptotic proteins and enhanced the expression levels of pro-apoptotic proteins in tumor tissues. Additionally, the pre-treatment of Ac-DEVD-CHO, an inhibitor of caspase-3, strongly restored the low cell viability, the enhanced apoptosis rate, the dissipation of MMP caused by lysionotin exposure, as well as prevented the lysionotin-caused enhancement on expressions of apoptosis related proteins, especially cleaved poly (ADP-ribose) polymerase (PARP), Fas Ligand (FasL), cleaved caspase-3 and Bax in both HepG2 and SMMC-7721 cells. Altogether, lysionotin showed significant anti-liver cancer effects related to caspase-3 mediated mitochondrial apoptosis.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Flavonas/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Carcinoma Hepatocelular/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Hepáticas/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Biomaterials ; 270: 120680, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33588140

RESUMEN

Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.


Asunto(s)
Neoplasias Pancreáticas , Microambiente Tumoral , Matriz Extracelular , Humanos , Terapia Molecular Dirigida , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico
15.
Front Pharmacol ; 12: 809125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082681

RESUMEN

The stimuli-responsive polymer-based platform for controlled drug delivery has gained increasing attention in treating hepatocellular carcinoma (HCC) owing to the fascinating biocompatibility and biodegradability, improved antitumor efficacy, and negligible side effects recently. Herein, a disulfide bond-contained polypeptide nanogel, methoxy poly(ethylene glycol)-poly(l-phenylalanine-co-l-cystine) [mPEG-P(LP-co-LC)] nanogel, which could be responsive to the intracellular reduction microenvironments, was developed to deliver lenvatinib (LEN), an inhibitor of multiple receptor tyrosine kinases, for HCC therapy. The lenvatinib-loaded nanogel (NG/LEN) displayed concise drug delivery under the stimulus of glutathione in the cancer cells. Furthermore, the intracellular reduction-responsive nanomedicine NG/LEN showed excellent antitumor effect and almost no side effects toward both subcutaneous and orthotopic HCC tumor-allografted mice in comparison to free drug. The excellent tumor-inhibition efficacy with negligible side effects demonstrated the potential of NG/LEN for clinical molecular targeted therapy of gastrointestinal carcinoma in the future.

16.
Theranostics ; 10(22): 9923-9936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929325

RESUMEN

Rationale: Hepatocellular carcinoma (HCC) has been increasingly recognized in nonalcoholic steatohepatitis (NASH) patients. Fibroblast growth factor 21 (FGF21) is reported to prevent NASH and delay HCC development. In this study, the effects of FGF21 on NASH progression and NASH-HCC transition and the potential mechanism(s) were investigated. Methods: NASH models and NASH-HCC models were established in FGF21Knockout (KO) mice to evaluate NASH-HCC transition. IL-17A signaling was investigated in the isolated hepatic parenchymal cells, splenocytes, and hepatocyte and HCC cell lines. Results: Lack of FGF21 caused significant up-regulation of the hepatocyte-derived IL-17A via Toll-like receptor 4 (TLR4) and NF-κB signaling. Restoration of FGF21 alleviated the high NAFLD activity score (NAS) and attenuated the TLR4-triggered hepatocyte-IL-17A expression. The HCC nodule number and tumor size were significantly alleviated by treatments of anti-IL-17A antibody. Conclusion: This study revealed a novel anti-inflammatory mechanism of FGF21 via inhibiting the hepatocyte-TLR4-IL-17A signaling in NASH-HCC models. The negative feedback loop on the hepatocyte-TLR4-IL-17A axis could be a potential anti-carcinogenetic mechanism for FGF21 to prevent NASH-HCC transition.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Interleucina-17/metabolismo , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Células 3T3 , Animales , Carcinoma Hepatocelular/patología , Células Cultivadas , Femenino , Hepatocitos/patología , Humanos , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Prospectivos , Transducción de Señal/fisiología
17.
Front Microbiol ; 11: 1113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719658

RESUMEN

Excessive alcohol consumption causes liver injury-induced mortality. Here we systematically analyzed the structure of triterpenoids extracted from Antrodia cinnamomea mycelia (ACT) and investigated their protective effects against acute alcohol-induced liver injury in mice. Liquid chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry were performed to determine the structures of ACT constituents. Alcohol-induced liver injury was generated in C57BL/6 mice by oral gavage of 13 g/kg white spirit (a wine at 56% ABV). Mice were treated with either silibinin or ACT for 2 weeks. Liver injury markers and pathological signaling were then quantified with enzyme-linked immunosorbent assays, antibody array assays, and Western blots, and pathological examinations were performed using hematoxylin-eosin staining and periodic acid-Schiff staining. Triterpenoids extracted from A. cinnamomea mycelia contain 25 types of triterpenoid compounds. A 2-weeks alcohol consumption treatment caused significant weight loss, liver dyslipidemia, and elevation of alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, and alkaline phosphatase activities in the serum and/or liver. These effects were markedly reversed after 2-weeks ACT administration. Triterpenoids extracted from A. cinnamomea mycelia alleviated the organ structural changes and inflammatory infiltration of alcohol-damaged tissues. Triterpenoids extracted from A. cinnamomea mycelia inhibited proinflammatory cytokine levels and enhanced anti-inflammatory cytokine levels. Acute alcohol treatment promoted inflammation with significant correlations to hypoxia-inducible factor 1α (HIF-1α), which was reduced by ACT and was partially related to modulation of the protein kinase B (Akt)/70-kDa ribosomal protein S6 kinase phosphorylation (p70S6K) and Wnt/ß-catenin signaling pathways. In conclusion, ACT protected against acute alcohol-induced liver damage in mice mainly through its suppression of the inflammatory response, which may be related to HIF-1α signaling.

18.
Front Pharmacol ; 11: 264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256355

RESUMEN

Cisplatin (CDDP) is a widely used chemotherapeutic agent for various solid tumors, but its severe side effects, particularly nephrotoxicity, limit its clinical application. Isoorientin (Iso) is a flavonoid-like compound known to have antioxidant effects. As oxidative injury plays a vital role in CDDP-induced acute kidney injury (AKI), the effect of Iso on CDDP-induced nephrotoxicity has not yet been researched. We assessed the effects of Iso against CDDP-induced nephrotoxicity in vitro using mTEC cells and further explored the mechanisms underlying CDDP-induced renal dysfunction in vivo in WT and Nrf2-/- mice. The results showed that Iso treatment significantly reduced CDDP-induced nephrotoxicity via attenuating cell damage in vitro and via ameliorating renal injury, as determined by biochemical markers, in mice. The molecular mechanism underlying this protection was also investigated. Iso up-regulated the expression levels of SIRT1 and SIRT6 in vivo and in vitro. In addition, Iso activated Nrf2 translocation and the expression levels of its downstream antioxidant enzymes, such as HO-1 and NQO1, whereas it inhibited the expression level of NOX4, thus decreasing oxidative stress. Notably, the protective effects of Iso observed in WT mice were completely abolished in Nrf2-/- mice. Collectively, these data indicate that the protective effect of Iso on CDDP-induced nephrotoxicity by SIRT1- and SIRT6-mediated Nrf2 activation regulates oxidative stress, inflammation and apoptosis. The absence of Nrf2 exacerbates CDDP-induced renal damage, and the pharmacological activation of Nrf2 may represent a novel therapy to prevent kidney injury.

19.
Front Oncol ; 9: 769, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475112

RESUMEN

AMPK-mediated autophagy and Akt/mTOR pathways play important roles in current cancer treatments. Oridonin (Ori), an ent-kaurane diterpenoid isolated from Isodon rubescens, exerts extensive anti-tumor potential and controversial effects on autophagy. In this study, we investigated the effect of Ori on the autophagy, apoptosis, and AMPK/Akt/mTOR pathways and determined whether Ori was related to the increased cisplatin sensitivity observed in A549 cells. First, we found that Ori suppressed Akt/mTOR, Bcl2 and autophagy flux with enhanced levels of Atg3, P62, and LC3II, which was also shown as the accumulation of autophagosomes. AMPK and pro-apoptotic proteins (caspase3, Bax, and PARP) were activated in Ori-treated cells. With the pretreatment of compound c (AMPK inhibitor), the activation of autophagosomes, apoptosis and the inhibition of Akt/mTOR pathways induced by Ori were all reversed. The Ori-activated apoptosis-related markers mentioned previously and the cell-killing effect were restrained by 3-MA (inhibitor of autophagosomes) treatment. Therefore, we hypothesized that the Ori-induced pro-apoptotic effect was mediated by AMPK/Akt/mTOR-dependent accumulation of impaired autophagosomes. Furthermore, Ori could increase the sensitivity of cisplatin through its increased cell-killing, autophagy-suppressing and apoptosis-inducing activities. In addition to sensitizing cisplatin, Ori also alleviated cisplatin-induced acute renal injury in vivo, manifested as depleted BUN, CRE, kidney index, and weight loss compared to the cisplatin group. In summary, apart from its protective effect on cisplatin-induced nephrotoxicity, Ori enhanced cisplatin sensitivity via its pro-apoptotic activity mediated by AMPK/Akt/mTOR-dependent autophagosome activation, which may be a potential therapeutic target for non-small cell lung cancer.

20.
Cancer Cell Int ; 19: 81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30988662

RESUMEN

BACKGROUND: Gastric cancer, as a multifactorial disorders, shows cytological and architectural heterogeneity compared to other gastrointestinal cancers, making it therapeutically challenging. Cisplatin is generally used in clinic for gastric cancer treatment but with toxic side effects and develops resistance. Anti-tumor properties of copper and its coordinated compounds have been explored intensively in recent years. METHODS: In this study, we synthesized a novel Schiff base copper coordinated compound (SBCCC) and examined its antitumor effects in two gastric cancer cell lines SGC-7901 and BGC-823 as well as a mouse model of gastric cancer. RESULTS: The results show that SBCCC can significantly inhibit the proliferation of gastric cancer cells in a dose- and time-dependent manner. The IC50 of SBCCC in SGC-7901 and BGC-823 cells is 1 µM, which is much less than cisplatin's IC50. SBCCC induces apoptosis and causes cell cycle arrest at the G1 phase. SBCCC induces apoptosis via multiple pathways including inhibition of NF-κB, ROS production and autophagy. CONCLUSIONS: The synthesized SBCCC induced cancer cell death via inhibition of NF-κB, ROS production and autophagy. The multiple cell-killing mechanisms were important to overcome therapeutic failure because of multidrug-resistance of cancer cells. SBCCC, with a lower IC50 compared to cisplatin, could render it the potential to overcome the side-effect for clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...