Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1356478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633704

RESUMEN

Background: Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods: Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results: According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion: Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.

2.
Clin Exp Nephrol ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643287

RESUMEN

OBJECTIVE: Cardiovascular disease (CVD) represents the primary cause of mortality in patients afflicted with end-stage renal disease and undergoing peritoneal dialysis (PD) treatment. Galectin-3 (Gal-3), a molecule known to exhibit a correlation with CVD mortality garners considerable interest. The objective of this study was to explore the potential association between serum Gal-3 levels and other CVD risk factors among PD patients. METHODS: In this cross-sectional study, a total of 114 PD patients with a minimum of 3 months of PD treatment were enrolled. Serum Gal-3 levels were quantified using an enzyme-linked immunosorbent assay. The data of patients with Gal-3 levels higher and lower than 26.744 pg/ml were compared using Mann-Whitney U tests or t tests. Pearson's correlation or Spearman's correlation analysis and multivariate regression were used to assess the associations between the known risk factors for CVD and Gal-3. RESULTS: In comparison to the inter-group baseline data, the low Gal-3 group exhibited a higher glomerular filtration rate (GFR). Gal-3 levels correlate positively with PD duration, B-type natriuretic peptide (BNP), growth differentiation factor 15 (GDF-15), interventricular septal thickness in diastolic (IVST), and left ventricular mass index (LVMI). Conversely, Gal-3 exhibited a negative correlation with albumin levels. Multivariate linear regression analysis demonstrated a positive correlation between Gal-3 levels and BNP, GDF-15, PD duration, IVST and LVMI. Gal-3 levels were negatively correlated with albumin levels. CONCLUSIONS: Gal-3 was strongly associated with BNP, GDF-15, IVST and LVMI in patients undergoing PD treatment. Prospective studies should be carried out to determine whether Gal-3 can be a promising biomarker in predicting increased risk of adverse cardiovascular events in PD patients.

3.
Macromol Rapid Commun ; 43(16): e2200085, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35298056

RESUMEN

The innovation of high-performance fused-ring electron acceptors (FREAs) has carried the field of organic solar cells (OSCs) toward a new stage of development. However, due to high synthetic complexity and production costs, FREAs may not be the most promising candidates for future commercialization applications. To address these disadvantages of FREAs, a series of low-cost acceptors, named as noncovalently FREAs (NFREAs), is successfully constructed by employing the strategy of noncovalently conformational locks. Herein, a novel NFREA (BDTO-4F) based on 3,7-dialkyloxybenzo[1,2-b:4,5-b']dithiophene is synthesized and fully characterized. Benefiting from the complementary absorption of the donor and acceptor, balanced charge transport, and favorable film morphology, J52:BDTO-4F based OSCs afford a satisfied power conversion efficiency of 12.09%, much higher than PBDB-T:BDTO-4F-based devices (8.30%). It is worth mentioning that BDTO-4F possesses a higher figure-of-merit value of 55.65 in comparison with several representative FREAs based on a cost-efficiency evaluation. This work demonstrates the potential of the novel benzo[1,2-b:4,5-b″]dithiophene derivative for constructing low-cost and high-performance NFREAs, providing a valuable insight on the materials design.

4.
Angew Chem Int Ed Engl ; 60(32): 17720-17725, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34060196

RESUMEN

Side-chain engineering is an effective strategy to regulate the solubility and packing behavior of organic materials. Recently, a unique strategy, so-called terminal side-chain (T-SC) engineering, has attracted much attention in the field of organic solar cells (OSCs), but there is a lack of deep understanding of the mechanism. Herein, a new noncovalently fused-ring electron acceptor (NFREA) containing two T-SCs (NoCA-5) was designed and synthesized. Introduction of T-SCs can enhance molecular rigidity and intermolecular π-π stacking, which is confirmed by the smaller Stokes shift value, lower reorganization free energy, and shorter π-π stacking distance in comparison to NoCA-1. Hence, the NoCA-5-based device exhibits a record power conversion efficiency (PCE) of 14.82 % in labs and a certified PCE of 14.5 %, resulting from a high electron mobility, a short charge-extraction time, a small Urbach energy (Eu ), and a favorable phase separation.

5.
Angew Chem Int Ed Engl ; 60(22): 12475-12481, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33749088

RESUMEN

Noncovalently fused-ring electron acceptors (NFREAs) have attracted much attention in recent years owing to their advantages of simple synthetic routes, high yields and low costs. However, the efficiencies of NFREAs based organic solar cells (OSCs) are still far behind those of fused-ring electron acceptors (FREAs). Herein, a series of NFREAs with S⋅⋅⋅O noncovalent intramolecular interactions were designed and synthesized with a two-step synthetic route. Upon introducing π-extended end-groups into the backbones, the electronic properties, charge transport, film morphology, and energy loss were precisely tuned by fine-tuning the degree of multi-fluorination. As a result, a record PCE of 14.53 % in labs and a certified PCE of 13.8 % for NFREAs based devices were obtained. This contribution demonstrated that combining the strategies of noncovalent conformational locks and π-extended end-group engineering is a simple and effective way to explore high-performance NFREAs.

6.
ACS Appl Mater Interfaces ; 12(47): 53076-53087, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33169974

RESUMEN

Renewable bio-based electromagnetic interference (EMI) shielding materials receive increasing attention undoubtedly. However, there is still a challenge to use raw biomass materials to construct a significant structure through an effortless and environmental route for EMI shielding applications. Herein, for the first time, we demonstrated a hybrid composite of multi-walled carbon nanotube/polypyrrole/chrome-tanned collagen fiber (MWCNT/PPy/CF), which utilized waste chrome shavings as a matrix. X-ray photoelectron spectroscopy reveals that the chromium on the CF has a binding effect on the PPy layer, which endows the tight integration between the CF and PPy layer. After the MWCNT network was loaded on the PPy layer, this ternary structure could provide stable conductive paths and a rich number of polarized interfaces. The MWCNT/PPy/CF composite exhibits superior electrical conductivity (354 ± 52 S/m), higher than PPy/CF (222 ± 38 S/m) and MWCNT/CF (104 ± 11 S/m), owing to the synergy of dual conductive structures. Notably, the shielding effectiveness (SE) value of the MWCNT/PPy/CF composite reaches 30 dB in the X band at a thickness of 0.48 mm. The shielding effectiveness of reflection (SER) (9.1 dB) is similar to that of PPy/CF (8.2 dB), while the shielding effectiveness of absorption (SEA) is significantly improved from 15.3 dB (PPy/CF) to 20.4 dB (MWCNT/PPy/CF) due to the additional coverage of the MWCNT network. This indicates the synergy between the MWCNT network and conductive PPy/CF skeleton. This work provided a method to prepare sustainable and low-cost renewable EMI shielding materials using chrome shavings. Meanwhile, this novel structure combining a conductive skeleton and heterostructure can be considered as a potential application in relevant fields.

7.
Angew Chem Int Ed Engl ; 59(35): 15043-15049, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32385920

RESUMEN

Triplet acceptors have been developed to construct high-performance organic solar cells (OSCs) as the long lifetime and diffusion range of triplet excitons may dissociate into free charges instead of net recombination when the energy levels of the lowest triplet state (T1 ) are close to those of charge-transfer states (3 CT). The current triplet acceptors were designed by introducing heavy atoms to enhance the intersystem crossing, limiting their applications. Herein, two twisted acceptors without heavy atoms, analogues of Y6, constructed with large π-conjugated core and D-A structure, were confirmed to be triplet materials, leading to high-performance OSCs. The mechanism of triplet excitons were investigated to show that the twisted and D-A structures result in large spin-orbit coupling (SOC) and small energy gap between the singlet and triplet states, and thus efficient intersystem crossing. Moreover, the energy level of T1 is close to 3 CT, facilitating the split of triplet exciton to free charges.

8.
Pharmaceutics ; 10(4)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428623

RESUMEN

Methoxy-poly(ethylene glycol)-poly(l-glutamic acid)-poly(l-phenylalanine) triblock polymers with different architecture were synthesized as drug carrier to obtain sustained and controlled release by tuning the composition. These triblock polymers were prepared by ring opening polymerization and poly(ethylene glycol) was used as an initiator. Polymerization was confirmed by ¹H NMR, FT-IR and gel penetration chromatography. The polymers can self-assemble to form micelles in aqueous medium and their critical micelle concentrations values were examined. The micelles were spherical shape with size of 50⁻100 nm and especially can arranged in a regular manner. Sorafenib was selected as the model drug and the drug loading performance was dependent on the composition of the block copolymer. In vitro drug release indicated that the polymers can realize controlled and sustained drug release. Furthermore, in vitro cytotoxicity assay showed that the polymers were biocompatible and the drug-loaded micelles can increase toxicity towards tumor cells. Confocal fluorescence microscopy assays illustrated that the micelles can be uptaken quickly and release drug persistently to inhibit tumor cell growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...