Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 2): 126743, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689290

RESUMEN

Cellulose nanocrystals (CNCs) are green reinforcing materials, and their potential has been evaluated in the preparation of waterborne UV-curable resin composites with high-performance. Herein, we present a novel and scalable approach for preparing surface-modified CNCs with acrylic-based polymers to strengthen the compatibility and interaction between CNCs and UV-curable resins. Using tert-butyl acrylate as the monomer, the nanocellulose grafted copolymer CNC-g-PtBA was successfully synthesized via atom transfer radical polymerization (ATRP) in the presence of a macromolecular initiator. Then, the CNC-g-PtBA is blended into the acrylic resin as a nanofiller to prepare the UV-curable nanocomposite. The results indicated that the contact angle of the CNCs increased from 38.7° to approximately 74.8°, and their thermal stability was significantly improved after graft modification. This contributed to the effective alleviation of the agglomeration phenomenon of nanocomposites due to the high hydrophilicity of pure CNCs. Notably, not only was the UV curing efficiency of the nanocomposites greatly increased but the mechanical properties were also further enhanced. Specifically, with the addition of 0.5 wt% CNC-g-PtBA, the curing time of the nanocomposite was shortened from >30 mins down to approximately 6 mins, and the bending strength was increased from 10 MPa for the original resin and 5 MPa for the addition of pure CNCs to 14.3 MPa, and the bending modulus was also greatly increased (up to approximately 730 MPa). Compared to pure CNCs, they are compatible with the resin, exhibiting high mechanical strength and flexibility, and have virtually no effect on the light transmission of the nanocomposites. Additionally, dielectric analysis (DEA) was used to monitor the dielectric constant and conductivity of the UV-curable nanocomposites in real time to further characterize their curing kinetics. The permittivity of these nanocomposites increased by 125 % compared to pristine resin, which shows potential for applications in high dielectric composites or for improving electrical conductivity. This work provides a feasible method for preparing UV-curable nanocomposites with high curing efficiency and permittivity, realizing a wider application of this high-performance nanocomposite.


Asunto(s)
Nanocompuestos , Nanopartículas , Polimerizacion , Polímeros , Nanopartículas/química , Nanocompuestos/química
2.
Materials (Basel) ; 16(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629897

RESUMEN

This study investigates the UV degradation of black Chinese lacquer by incorporating carbon black and ferrous hydroxide as additives. The purpose of this research is to understand the effects of these additives on the degradation behavior of the lacquer film. Different concentrations of carbon black powder (1%, 3%, and 5%) and Fe(OH)2 (10%, 20%, and 30%) were added to the lacquer following traditional techniques. The main methods employed for analysis were gloss loss measurement, color change assessment, SEM imaging, FTIR spectroscopy, and XPS analysis. The results demonstrate a significant decrease in gloss levels and an increase in lightness values with increasing ultraviolet exposure time. SEM images reveal the formation of cracks in the lacquer film. FTIR analysis indicates oxidation of the urushiol side chain and an increase in oxidation products. The infrared difference spectrum highlights the differences between the additives, with Fe(OH)2 showing a lower impact on the spectra compared to carbon black. XPS analysis confirms the oxidation of the C-H functional group and the presence of C-O-C and C-OH groups. In conclusion, this study sheds light on the influence of carbon black and ferrous hydroxide additives on the UV degradation of black Chinese lacquer and suggests the protective effect of Fe(OH)2 against UV aging. These findings contribute to a better understanding of the degradation mechanisms and provide insights for improving the UV resistance of Chinese lacquer coatings. Further research can explore alternative additives and optimization strategies to mitigate UV-induced degradation.

3.
Anim Biosci ; 36(9): 1367-1375, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37402463

RESUMEN

OBJECTIVE: Pigment production and distribution are controlled through multiple proteins, resulting in different coat color phenotypes of sheep. METHODS: The expression distribution of vimentin (VIM) and transthyretin (TTR) in white and black sheep skins was detected by liquid chromatography-electrospray ionization tandem MS (LC-ESI-MS/MS), gene ontology (GO) statistics, immunohistochemistry, Western blot, and quantitative real time polymerase chain reaction (qRT-PCR) to evaluate their role in the coat color formation of sheep. RESULTS: LC-ESI-MS/MS results showed VIM and TTR proteins in white and black skin tissues of sheep. Meanwhile, GO functional annotation analysis suggested that VIM and TTR proteins were mainly concentrated in cellular components and biological process, respectively. Further research confirmed that VIM and TTR proteins were expressed at significantly higher levels in black sheep skins than in white sheep skins by Western blot, respectively. Immunohistochemistry notably detected VIM and TTR in hair follicle, dermal papilla, and outer root sheath of white and black sheep skins. qRT-PCR results also revealed that the expression of VIM and TTR mRNAs was higher in black sheep skins than in white sheep skins. CONCLUSION: The expression of VIM and TTR were higher in black sheep skins than in white sheep skins and the transcription and translation were unanimous in this study. VIM and TTR proteins were expressed in hair follicles of white and black sheep skins. These results suggested that VIM and TTR were involved in the coat color formation of sheep.

4.
Quant Imaging Med Surg ; 13(4): 2697-2707, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37064397

RESUMEN

Background: The aim of this study was to investigate the value of unenhanced magnetic resonance imaging (MRI) with diffusion kurtosis imaging (DKI) in diagnosing papillary thyroid carcinoma (PTC). Methods: In all, 77 consecutive patients comprising a total of 77 thyroid nodules were enrolled in this study. Of these nodules, 41 were histopathologically confirmed PTCs and 36 were benign nodules. All patients underwent thyroid MRI including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and DKI. All the images were assessed by 2 radiologists. The signal intensity ratio (SIR) of these nodules on T1WI and T2WI, the apparent diffusion coefficient (ADC) from DWI, and mean diffusivity (MD) and mean kurtosis (MK) from DKI were measured. Morphological features on these images were also evaluated. Univariate and multivariate logistic regression analyses were used to evaluate the value of these parameters as potential predictors of PTC. Results: In the univariate analyses, the features that significantly indicated PTC were decreased ADC value (P<0.001), decreased MD value (P<0.001), increased MK value (P<0.001), younger age (P=0.001), female tendency (P=0.049), smaller tumor diameter (P<0.001), solid component (P<0.001), and irregular margin (P<0.001). In the multivariate analysis, decreased MD value (odds ratio =25.321; P=0.001), smaller diameter (odds ratio =13.751; P=0.006), and irregular margin (odds ratio =16.003; P=0.003) were independent risk factors for PTC. The combined predictor of MD, diameter, and margin showed an area under the receiver operating characteristic (ROC) curve of 0.996 in diagnosing PTC, with an optimal cutoff value of 0.69 (95.1% sensitivity, 100.0% specificity). Conclusions: Lower MD value from DKI, smaller diameter, and irregular margin are useful predictive biomarkers for PTC.

5.
Materials (Basel) ; 16(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770151

RESUMEN

Luoyang No.1 is a Qing Dynasty (1644-1902) inland river ancient wooden shipwreck discovered in September 2013. It adds significantly to the study of Grand Canal transport history and Luoyang's economic history. The wood characteristics of Luoyang No.1 were investigated in this study using chemical compositions, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nano-indentation (NI), and scanning electron microscopy (SEM). The results showed that the holocellulose content was only 32.84-37.69%, indicating that the cellulose and hemicellulose had been seriously degraded. Based on the XRD pattern, the degree of crystallinity of cellulose in wood ranged from 19.82 to 22.83%. The nano-indentation demonstrated that compared with the undegraded contemporary wood, the elastic modulus and hardness of the ancient ship wood decreased by 45.5% and 32.1%, respectively. Furthermore, the FTIR spectra revealed that the biological deterioration of ancient wood was indicated by a decrease in the peaks related to cellulose and hemicellulose, but the change in lignin was insignificant. The results could provide knowledge for appropriate dewatering, strengthening, restoration strategies and regulation of the museum environment.

6.
Materials (Basel) ; 16(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36676247

RESUMEN

Huaguangjiao I refers to the ancient Chinese wooden shipwreck of the South Song Dynasty (1127-1279 AD) discovered in the South China Sea in 1996. From 2008 to 2017, the archaeological waterlogged wood was desalted using deionized water combined with ultrasonic treatment, and desalted using EDTA-2Na, EDTAHO, and NaH2PO4·2H2O solutions. In this paper, the degree of degradation of the modified waterlogged archaeological wood and the moisture and content of the main components were determined. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nanoindentation (NI), and scanning electron microscopy (SEM) were employed to investigate the state of wood degradation after desalination and desulfurization. The results showed that the water content of the wood was as high as 532~1149%, while the basic density was only 0.14~0.18 g/cm3, indicating that the wood had been seriously degraded. The holocellulose content was only 36-40%. Based on the XRD patterns, the degree of cellulose crystallinity in the modified wood was 14.08%. The elastic modulus and hardness of the ancient shipwreck wood after desalination and desulfurization were 1.28-4.31 and 0.10-0.28 GPa, respectively, according to nanoindentation. In addition, the FTIR spectra revealed that the biological deterioration of the modified wood caused cellulose and hemicellulose degradation, but no apparent lignin alteration occurred. The results could provide knowledge for appropriate dewatering, strengthening, and restoration strategies.

7.
Nano Lett ; 23(3): 872-879, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36662599

RESUMEN

The kagome metal CsV3Sb5 features an unusual competition between the charge-density-wave (CDW) order and superconductivity. Evidence for time reversal symmetry breaking (TRSB) inside the CDW phase has been accumulating. Hence, the superconductivity in CsV3Sb5 emerges from a TRSB normal state, potentially resulting in an exotic superconducting state. To reveal the pairing symmetry, we first investigate the effect of nonmagnetic impurity. Our results show that the superconducting critical temperature is insensitive to disorder, pointing to conventional s-wave superconductivity. Moreover, our measurements of the self-field critical current (Ic,sf), which is related to the London penetration depth, also confirm conventional s-wave superconductivity with strong coupling. Finally, we measure Ic,sf where the CDW order is removed by pressure and superconductivity emerges from the pristine normal state. Our results show that s-wave gap symmetry is retained, providing strong evidence for the presence of conventional s-wave superconductivity in CsV3Sb5 irrespective of the presence of the TRSB.

8.
Rev Sci Instrum ; 93(8): 083912, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050123

RESUMEN

Quantum materials exhibit intriguing properties with important scientific values and huge technological potential. Electrical transport measurements under hydrostatic pressure have been influential in unraveling the underlying physics of many quantum materials in bulk form. However, such measurements have not been applied widely to samples in the form of thin flakes, in which new phenomena can emerge, due to the difficulty in attaching fine wires to a thin sample suitable for high-pressure devices. Here, we utilize a home-built direct laser writing system to functionalize a diamond anvil to directly integrate the capability of conducting electrical transport measurements of thin flakes with a pressure cell. With our methodology, the culet of a diamond anvil is equipped with a set of custom-designed conducting tracks. We demonstrate the superiority of these tracks as electrodes for the studies of thin flakes by presenting the measurement of pressure-enhanced superconductivity and quantum oscillations in a flake of MoTe2.

9.
Sensors (Basel) ; 22(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35591180

RESUMEN

The majority of digital sensors rely on von Neumann architecture microprocessors to process sampled data. When the sampled data require complex computation for 24×7, the processing element will a consume significant amount of energy and computation resources. Several new sensing algorithms use deep neural network algorithms and consume even more computation resources. High resource consumption prevents such systems for 24×7 deployment although they can deliver impressive results. This work adopts a Computing-In-Memory (CIM) device, which integrates a storage and analog processing unit to eliminate data movement, to process sampled data. This work designs and evaluates the CIM-based sensing framework for human pose recognition. The framework consists of uncertainty-aware training, activation function design, and CIM error model collection. The evaluation results show that the framework can improve the detection accuracy of three poses classification on CIM devices using binary weights from 33.3% to 91.5% while that on ideal CIM is 92.1%. Although on digital systems the accuracy is 98.7% with binary weight and 99.5% with floating weight, the energy consumption of executing 1 convolution layer on a CIM device is only 30,000 to 50,000 times less than the digital sensing system. Such a design can significantly reduce power consumption and enables battery-powered always-on sensors.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos
10.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614442

RESUMEN

In this study, wood samples extracted from the Taicang ancient ship, dating back to the Yuan Dynasty, were investigated to study the characteristics of waterlogged archaeological wood. The macroscopic characteristics and microscopic structures were used to identify the wood species. To assess the degree of degradation of the waterlogged archaeological wood, X-ray diffraction (XRD), nanoindentation (NI), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to compare the new and ancient wood samples from the same species. The microscopic structures of the samples were identified as Pinus massoniana. The XRD and nanoindentation results revealed that the crystallinity index of the cellulose decreased from 41.07% to 33.85%, the elastic modulus was reduced by 20.90%, and hardness was reduced by 55.6% compared with the new wood. The FTIR spectra revealed that biological deterioration occurred in the cellulose and hemicellulose, but there was no noticeable change in the lignin content. These results provide helpful information for the conservation and restoration of ancient ships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA