Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychiatr Dis Treat ; 19: 2833-2840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149001

RESUMEN

Objective: This study aims to elucidate the potential links between the GLU/GABA to GLN metabolic cycle disruptions and the onset of depressive and insomnia disorders following a stroke. We particularly focus on understanding if these disorders share a common underlying pathogenic mechanism. Methods: We examined 63 patients with post-stroke insomnia, 62 patients with post-stroke depression, and 18 healthy individuals. The study involved assessing insomnia using the Acute Insomnia Scale (AIS) and depression using the Hamilton Depression Rating Scale. We measured serum concentrations of GLN, GLU, and GABA and analyzed their correlations with AIS and HAMD scores. Results: Our results indicate no significant difference in the serum levels of GLN, GLU, and GABA between the post-stroke insomnia and depression groups. However, these levels were notably lower in both patient groups compared to the healthy control group. A negative correlation between AIS scores and GABA levels was observed in the post-stroke insomnia group, suggesting a potential link between GABAergic disturbances and insomnia. Conversely, no significant correlation was found between Hamilton Depression Rating Scale scores and the levels of GABA, GLU, or GLN in the post-stroke depression group. Conclusion: The study highlights that abnormalities in the GLU/GABA to GLN metabolic cycle, particularly the levels of GLN, GABA, and GAD, might be intricately linked to the pathogenesis of post-stroke insomnia and depression. Our findings suggest that GABAergic imbalances could be indicative of post-stroke insomnia, serving as potential biological markers for differential diagnosis in clinical settings. Further research is warranted to explore these relationships in greater depth, potentially leading to new diagnostic and therapeutic approaches for post-stroke neuropsychiatric disorders.

2.
Front Nutr ; 10: 924260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032764

RESUMEN

Purpose: This paper presents a preliminary study on whether repetitive transcranial magnetic stimulation (rTMS) can modulate the nutritional status of persistent vegetative state (PVS) patients (the primary endpoint) by regulating the intestinal flora and the metabolites, with the correlation between them also investigated. Methods: Seventy-six patients with PVS were selected and divided into the observation group (n = 38) and the control group (n = 38) by random numerical grouping. All subjects' stool samples were examined for metabolites and analyzed regarding the short-chain fatty acids (SCFAs) content. All subjects' serum albumin, prealbumin, and hemoglobin levels were measured before and after the treatment. Nutrition risk screening 2002 was performed on all the subjects before and after the treatment and on the 30th and 90th days of the follow-up. Results: (1) Intestinal flora structure: the Chao index, Ace index, and Shannon index of the observation group and the control group were significantly higher (p < 0.05), while the Simpson index was significantly lower (p < 0.05) following the treatment. (2) Metabolites of the intestinal flora: the observation group had significantly higher levels of acetic acid, butyric acid, and valeric acid (p < 0.05), as well as lower levels of propionic acid (p < 0.05) following the treatment. (3) Nutritional status (the primary endpoint): following the treatment, the above serum nutritional indices were significantly higher in both groups (p < 0.05), while the indices of the observation group were significantly higher than those of the control group (p < 0.05). Conclusion: The rTMS method may improve the nutritional status of patients with PVS by regulating the structure of the intestinal flora and affecting the level of SCFAs through the microbiota-gut-brain axis. The possible mechanism involves how high-frequency rTMS can cause increased excitation in the frontal lobe of the right side of the brain, thus regulating the 5-hydroxytryptamine and norepinephrine levels.

3.
Front Neurosci ; 15: 685931, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621150

RESUMEN

Objective: This study aimed to research the effect of transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) on the lower limb function of post-convalescent stroke patients. Methods: A total of 122 patients in the stroke recovery stage who suffered from leg dysfunction were randomly divided into two groups: a tDCS group (n = 61) and a FES group (n = 61). All patients received same routine rehabilitation and equal treatment quality, the tDCS group was treated with tDCS, while the FES group received FES. The lower limb Fugl-Meyer assessment (FMA), modified Barthel index (MBI), functional ambulatory category (FAC), and somatosensory evoked potential (SEP) were used to assess the patients at three different stages: prior to treatment, 4 weeks after treatment, and 8 weeks after treatment. Results: The assessment scores for FMA, MBI, and FAC for the lower extremities after treatment (P > 0.05) were compared with those before treatment. The FMA, MBI, and FAC scores of the tDCS group were significantly higher than those of the FES group in all three stages (P < 0.05). The FMA, MBI, and FAC assessment scores of both groups were significantly higher after 4 weeks of treatment than that before treatment, and the scores after 8 weeks of treatment were significantly higher than those after 4 weeks after treatment (P < 0.05). The P40, N45 latencies decreased and the P40, N45 amplitudes increased, but there was no significant difference before treatment and after treatment (P >0.05), and there was no significant difference of the tDCS and FES groups before treatment and after treatment. Conclusion: In conclusion, FMA, MBI, and FAC indicate that both tDCS and FES can significantly promote the recovery of a patient's leg motor function and tDCS is more effective than FES in the stroke recovery stage. The application value of SEP in stroke patients remains to be further studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...