Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 164: 107292, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544250

RESUMEN

BACKGROUND: Distal radius fractures (DRFs) treated with volar locking plates (VLPs) allows early rehabilitation exercises favourable to fracture recovery. However, the role of rehabilitation exercises induced muscle forces on the biomechanical microenvironment at the fracture site remains to be fully explored. The purpose of this study is to investigate the effects of muscle forces on DRF healing by developing a depth camera-based fracture healing model. METHOD: First, the rehabilitation-related hand motions were captured by a depth camera system. A macro-musculoskeletal model is then developed to analyse the data captured by the system for estimating hand muscle and joint reaction forces which are used as inputs for our previously developed DRF model to predict the tissue differentiation patterns at the fracture site. Finally, the effect of different wrist motions (e.g., from 60° of extension to 60° of flexion) on the DRF healing outcomes will be studied. RESULTS: Muscle and joint reaction forces in hands which are highly dependent on hand motions could significantly affect DRF healing through imposed compressive and bending forces at the fracture site. There is an optimal range of wrist motion (i.e., between 40° of extension and 40° of flexion) which could promote mechanical stimuli governed healing while mitigating the risk of bony non-union due to excessive movement at the fracture site. CONCLUSION: The developed depth camera-based fracture healing model can accurately predict the influence of muscle loading induced by rehabilitation exercises in distal radius fracture healing outcomes. The outcomes from this study could potentially assist osteopathic surgeons in designing effective post-operative rehabilitation strategies for DRF patients.


Asunto(s)
Fracturas del Radio , Fracturas de la Muñeca , Humanos , Fracturas del Radio/cirugía , Fijación Interna de Fracturas , Articulación de la Muñeca , Músculo Esquelético , Placas Óseas , Rango del Movimiento Articular , Resultado del Tratamiento
2.
Comput Methods Programs Biomed ; 241: 107774, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651819

RESUMEN

BACKGROUND AND OBJECTIVES: The healing outcomes of distal radius fracture (DRF) treated with the volar locking plate (VLP) depend on surgical strategies and postoperative rehabilitation. However, the accurate prediction of healing outcomes is challenging due to a range of certainties related to the clinical conditions of DRF patients, including fracture geometry, fixation configuration, and physiological loading. The purpose of this study is to investigate the influence of uncertainty and variability in fracture/fixation parameters on the mechano-biology and biomechanical stability of DRF, using a probabilistic numerical approach based on the results from a series of experimental tests performed in this study. METHODS: Six composite radius sawboneses fitted with titanium VLP (VLP 2.0, Austofix) were loaded to failure at a rate of 2 N/s. The testing results of the elastic and plastic behaviour of the VLP were used as inputs for a probabilistic-based computational model of DRF, which simulated mechano-regulated tissue differentiation and fixation elastic capacity at the fracture site. Finally, the probability of success in early indirect healing and fracture stabilisation was predicted. RESULTS: The titanium VLP is a strong and ductile fixation whose flexibility and elastic capacity are governed by flexion working length and bone-to-plate distance, respectively. A fixation with optimised designs and configurations is critical to mechanically stabilising the early fracture site. Importantly, the uncertainty and variability in fracture/fixation parameters could compromise early DRF healing. The physiological loading uncertainty is the most adverse factor, followed by the negative impact of uncertainty in fracture geometry. CONCLUSIONS: The VRP 2.0 fixation made of grade II titanium is a desirable fixation that is strong enough to resist irreparable deformation during early recovery and is also ductile to deform plastically without implant failure at late rehabilitation.


Asunto(s)
Fracturas Óseas , Fracturas de la Muñeca , Humanos , Incertidumbre , Titanio , Probabilidad
3.
Comput Methods Programs Biomed ; 233: 107464, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905887

RESUMEN

BACKGROUND AND OBJECTIVES: Early therapeutic exercises are vital for the healing of distal radius fractures (DRFs) treated with the volar locking plate. However, current development of rehabilitation plans using computational simulation is normally time-consuming and requires high computational power. Thus, there is a clear need for developing machine learning (ML) based algorithms that are easy for end-users to implement in daily clinical practice. The purpose of the present study is to develop optimal ML algorithms for designing effective DRF physiotherapy programs at different stages of healing. METHOD: First, a three-dimensional computational model for the healing of DRF was developed by integrating mechano-regulated cell differentiation, tissue formation and angiogenesis. The model is capable of predicting time-dependant healing outcomes based on different physiologically relevant loading conditions, fracture geometries, gap sizes, and healing time. After being validated using available clinical data, the developed computational model was implemented to generate a total of 3600 clinical data for training the ML models. Finally, the optimal ML algorithm for each healing stage was identified. RESULTS: The selection of the optimal ML algorithm depends on the healing stage. The results from this study show that cubic support vector machine (SVM) has the best performance in predicting the healing outcomes at the early stage of healing, while trilayered ANN outperforms other ML algorithms in the late stage of healing. The outcomes from the developed optimal ML algorithms indicate that Smith fractures with medium gap sizes could enhance the healing of DRF by inducing larger cartilaginous callus, while Colles fractures with large gap sizes may lead to delayed healing by bringing excessive fibrous tissues. CONCLUSIONS: ML represents a promising approach for developing efficient and effective patient-specific rehabilitation strategies. However, ML algorithms at different healing stages need to be carefully chosen before being implemented in clinical applications.


Asunto(s)
Fracturas del Radio , Fracturas de la Muñeca , Humanos , Fijación Interna de Fracturas/métodos , Curación de Fractura/fisiología , Algoritmos , Placas Óseas
4.
Comput Biol Med ; 148: 105904, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933963

RESUMEN

BACKGROUND AND OBJECTIVES: Cartilage surface roughness has significant implications on joint lubrication. However, the effects of the variability in surface roughness in different directions (especially in horizontal direction) in mixed-mode lubrication have not been fully investigated and relevant research work in this field is limited. This study presents a probabilistic numerical approach to investigate the influence of variability and uncertainty of Root-Mean-Square (RMS) roughness heights (vertical roughness) and roughness correlation lengths (horizontal roughness) on cartilage lubrication. METHODS: The synthetic surface topographies with typical ranges of vertical and horizontal roughness characteristics were firstly input to a coupled cartilage contact model. A response surface was then constructed using the input roughness parameters and the output coefficient of friction (CoF). Finally, a large number of independent or correlated roughness samples were generated for computing the probability of mixed-mode lubrication failure (PoF), which was defined as CoF > 0.27 (corresponding to a 90% loss of fluid support in the contact interface). RESULTS: Both independent RMS roughness heights and correlation lengths are correlated positively with CoF. This indicates that the increase of the vertical surface roughness could exacerbate cartilage wear, whereas increasing surface roughness in horizontal direction (i.e., reducing correlation lengths) could retain gap fluid that aids mixed-mode lubrication. Importantly, it shows that CoF is dominant by RMS roughness height. The uncertainty in the independent correlation lengths may lead to the underestimation of PoF. By simulating osteoarthritic surface roughness with a strong correlation between RMS roughness heights and correlation lengths, the value of PoF could reach 70-99%. CONCLUSION: This study highlights the significance of incorporating the mutual relations between the surface roughness in vertical and horizontal directions into research, and the findings could potentially contribute to the design of biomimetic cartilage surfaces for the treatment of osteoarthritis.


Asunto(s)
Cartílago Articular , Fricción , Lubrificación , Propiedades de Superficie , Líquido Sinovial , Incertidumbre
5.
Comput Methods Programs Biomed ; 215: 106626, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35051836

RESUMEN

BACKGROUND AND OBJECTIVE: Therapeutic exercises could potentially enhance the healing of distal radius fractures (DRFs) treated with volar locking plate (VLP). However, the healing outcomes are highly dependant on the patient-specific fracture geometries (e.g., gap size) and the loading conditions at the fracture site (e.g., loading frequency) resulted from different types of therapeutic exercises. The purpose of this study is to investigate the effects of different loading frequencies induced by therapeutic exercises on the biomechanical microenvironment of the fracture site and the transport of cells and growth factors within the fracture callus, ultimately the healing outcomes. This is achieved through numerical modelling and mechanical testing. METHODS: Five radius sawbones specimens (Pacific Research Laboratories, Vashon, USA) fixed with VLP (VRP2.0+, Austofix) were mechanically tested using dynamic test instrument (INSTRON E3000, Norwood, MA). The loading protocol used in mechanical testing involved a series of cyclic axial compression tests representing hand and finger therapeutic exercises. The relationship between the dynamic loading rate (i.e., loading frequency) and dynamic stiffness of the construct was established and used as inputs to a developed numerical model for studying the dynamic loading induced cells and growth factors in fracture site and biomechanical stimuli required for healing. RESULTS: There is a strong positive linear relationship between the loading rate and axial stiffness of the construct fixed with VLP. The loading rates induced by the moderate frequencies (i.e., 1-2 Hz) could promote endochondral ossification, whereas relatively high loading frequencies (i.e., over 3 Hz) may hinder the healing outcomes or lead to non-union. In addition, a dynamic loading frequency of 2 Hz in combination of a fracture gap size of 3 mm could produce a better healing outcome by enhancing the transport of cells and growth factors at the fracture site in comparison to free diffusion (i.e. without loading), and thereby produces a biomechanical microenvironment which is favourable for healing. CONCLUSION: The experimentally validated numerical model presented in this study could potentially contribute to the design of effective patient-specific therapeutic exercises for better healing outcomes. Importantly, the model results demonstrate that therapeutic grip exercises induced dynamic loading could produce a better biomechanical microenvironment for healing without compromising the mechanical stability of the overall volar locking plate fixation construct.


Asunto(s)
Fracturas del Radio , Radio (Anatomía) , Fenómenos Biomecánicos , Placas Óseas , Fijación Interna de Fracturas , Curación de Fractura , Fuerza de la Mano , Humanos , Fracturas del Radio/terapia
6.
Ann Biomed Eng ; 49(9): 2533-2553, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34189632

RESUMEN

The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries. The simulation results show that the mechanical behaviour of VLP is mainly governed by the axial compression. In addition, the model shows that, under relatively large gap size (i.e., 3-5 mm), the increase of FWL could enhance chondrocyte differentiation while a large BPD could compromise the mechanical stability of VLP. Importantly, bending moment produced by wrist flexion/extension and torsion moment produced from forearm rotation could potentially hinder endochondral ossification at early stage of healing. The developed model could potentially assist orthopaedic surgeons in surgical pre-planning and designing post-operation physical therapy for treatment of distal radius fractures.


Asunto(s)
Curación de Fractura , Modelos Biológicos , Fracturas del Radio , Adulto , Fenómenos Biomecánicos , Placas Óseas , Diferenciación Celular , Elasticidad , Humanos , Células Madre Mesenquimatosas/citología
7.
RSC Adv ; 11(30): 18171-18178, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480925

RESUMEN

Herein, a nanocarbon-poly(ricinoleic acid) composite as a lubricant additive with excellent oil-solubility and dispersity was synthesized using nanocarbon spheres (CNSs) and ricinoleic acid via a "one-pot" approach. The prepared composite was characterized via Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TG), Raman spectroscopy (Raman) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) showed that there was no obvious aggregation after surface modification of CNSs. Results demonstrated that the dispersion stability of the composite anti-wear additive in base lubricating oil was significantly optimized. The prepared nanocarbon-poly(ricinoleic acid) composite showed significantly improved stability and dispersity in base lubricating oil for 3 months without obvious precipitation. Tribological tests indicated that the composite lubricant additive exhibited an improved anti-wear performance and better wear resistance than pure CNS additives. The friction coefficients with the composite anti-wear additive dropped from 0.052 to 0.027, which was reduced by 48.1% compared with that of the TMT base lubricating oil. Furthermore, the composite additive is desirable for efficient anti-wear properties in base lubricating oil. The synergistic effect between modified CNSs and poly(ricinoleic acid) significantly improved the wear resistance of the base oil.

8.
Comput Biol Med ; 123: 103915, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32768051

RESUMEN

This study numerically investigates the pathological changes of fluid flow in cartilage contact gap due to the changes in cartilage surface roughness and synovial fluid characteristics in osteoarthritic (OA) condition. First, cartilage surface topographies in both healthy and OA conditions are constructed using a numerical approach with consideration of both vertical and horizontal roughness. Then, constitutive equations for synovial fluid viscosity are obtained through calibration against previous experimental data. Finally, the roughness and synovial fluid information are input into the gap flow model to predict the gap permeability. The results show that the rougher surface of OA cartilage tends to decrease gap permeability by around 30%-60%. More importantly, with the reduction in gap size, the decrease in gap permeability becomes more significant, which could result in an early fluid ultrafiltration into the tissue. Moreover, it is demonstrated that the pathological synovial fluid has more deleterious effects on the gap permeability than the OA cartilage surface, as it could potentially increase the gap permeability by a few hundred times for pressure gradients less than 106 Pa/m, which could inhibit the fluid ultrafiltration into the tissue. The outcomes from this research indicate that the change in fluid flow behaviour in contact gap in OA condition could significantly affect the function of articular joints.


Asunto(s)
Cartílago Articular , Líquido Sinovial
9.
Materials (Basel) ; 12(14)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311128

RESUMEN

The application of trimellitate (TMT) in the lubricating oil industry was seriously restricted because of its low viscosity index. In the work reported here, polycaprolactone (PCL) soft chain was embedded into the structure of TMT in order to improve the viscosity index. Characterization of the polymers was done by proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). Results supported our design and were consistent with the target product structure. Performance of the prepared materials was evaluated by standard ASTM methods. Noticeably, the viscosity index of the modified TMT increased from 8 to above 100, which greatly improved its viscosity-temperature performance. As the initiator, tetrabutyl titanate (TBT) can not only complete the ring-opening polymerization of caprolactam (ε-CL) at room temperature, but also generate nano-TiO2 by-products with excellent anti-wear properties during the synthesis. Characterization of the nano-TiO2 was done by scanning electron microscopy (SEM), FT-IR, TG and X-ray diffractometry (XRD). The friction and wear tests were conducted on a four-ball friction tester and the surface morphologies of worn surfaces were investigated by SEM. The experimental results clearly showed that the modified TMT showed better viscosity index and thermal stability as compared to the unmodified one. The modified nano-TMT base oil features excellent lubricant performance with good viscosity-temperature properties, thermal stability and anti-wear properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...