Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Neurobiol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561559

RESUMEN

Spinal cord injury (SCI) is a significant health concern, as it presently has no effective treatment in the clinical setting. Inflammation is a key player in the pathophysiological process of SCI, with a number of studies evidencing that the inhibition of the NF-κB signaling pathway may impede the inflammatory response and improve SCI. OTULIN, as a de-ubiquitination enzyme, the most notable is its anti-inflammatory effect. OTULIN can inhibit the NF-κB signaling pathway to suppress the inflammatory reaction via de-ubiquitination. In addition, OTULIN may promote vascular regeneration through the Wnt/ß-catenin pathway in the wake of SCI. In this review, we analyze the structure and physiological function of OTULIN, along with both NF-κB and Wnt/ß-catenin signaling pathways. Furthermore, we examine the significant role of OTULIN in SCI through its impairment of the NF-κB signaling pathway, which could open the possibility of it being a novel interventional target for the condition.

2.
Gynecol Endocrinol ; 40(1): 2332411, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38537663

RESUMEN

OBJECTIVES: The objective of this study was to investigate the glycolytic activity of adenomyosis, which is characterized by malignant biological behaviors including abnormal cell proliferation, migration, invasion, cell regulation, and epithelial-mesenchymal transition. METHODS: From January 2021 to August 2022, a total of 15 patients who underwent total hysterectomy for adenomyosis and 14 patients who had non-endometrial diseases, specifically with cervical squamous intraepithelial neoplasia and uterine myoma, were included in this study. Myometrium with ectopic endometrium from patients with adenomyosis while normal myometrium from patients in the control group were collected. All samples were confirmed by a histopathological examination. The samples were analyzed by liquid chromatography-mass spectrometry (LC-MS), real-time quantitative PCR, NAD+/NADH assay kit as well as the glucose and lactate assay kits. RESULTS: Endometrial stroma and glands could be observed within the myometrium of patients in the adenomyosis group. We found that the mRNA expressions of HK1, PFKFB3, glyceraldehyde-3-phospate dehydrogenase (GAPDH), PKM2, and PDHA as well as the protein expressions of PFKFB3 were elevated in ectopic endometrial tissues of the adenomyosis group as compared to normal myometrium of the control group. The level of fructose 1,6-diphosphate was increased while NAD + and NAD+/NADH ratio were decreased compared with the control group. Besides, increased glucose consumption and lactate production were observed in myometrium with ectopic endometrium. CONCLUSIONS: We concluded that altered glycolytic phenotype of the myometrium with ectopic endometrium in women with adenomyosis may contribute the development of adenomyosis.


Asunto(s)
Adenomiosis , Humanos , Femenino , Adenomiosis/patología , Miometrio/metabolismo , NAD/metabolismo , Endometrio/metabolismo , Glucosa/metabolismo , Lactatos/metabolismo
3.
Ageing Res Rev ; 95: 102214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311254

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease with an increased morbidity. The pathogenesis PD has not been fully elucidated, and whatever mechanism is involved, it ultimately leads to dopamine (DA) neuronal apoptosis. Cuproptosis is a novel form of cell death. Its morphology, biochemical properties, and mechanism of action differ from known forms of cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Copper binds to the lipoylated components of the tricarboxylic acid cycle, causing proteotoxic stress that ultimately leads to cellular cuproptosis. PD has biochemical features such as mitochondrial dysfunction and decreased levels of copper and glutathione in brain regions. This is closely related to the cuproptosis mechanism. However, the specific link between the pathogenesis of PD and cuproptosis is unclear. Herein, we summarizes cuproptosis as the cause of DA neuronal death in PD, and the relationship between cuproptosis and the PD pathogenesis. This article provides a research basis for targeted cuproptosis for PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Cobre , Muerte Celular/fisiología , Apoptosis
4.
Mol Cell Biochem ; 479(2): 351-362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37076656

RESUMEN

Spinal cord injury (SCI) is a serious central nervous system disease. Traumatic SCI often causes persistent neurological deficits below the injury level. Epigenetic changes occur after SCI. Studies have shown DNA methylation to be a key player in nerve regeneration and remodeling, and in regulating some pathophysiological characteristics of SCI. Curcumin is a natural polyphenol from turmeric. It has anti-inflammatory, antioxidant, and neuroprotective effects, and can mitigate the cell and tissue damage caused by SCI. This report analyzed the specific functions of DNA methylation in central nervous system diseases, especially traumatic brain injury and SCI. DNA methylation can regulate the level of gene expressions in the central nervous system. Therefore, pharmacological interventions regulating DNA methylation may be promising for SCI.


Asunto(s)
Curcumina , Traumatismos de la Médula Espinal , Humanos , Metilación de ADN , Curcumina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Epigénesis Genética , Antioxidantes , Médula Espinal
5.
Metab Brain Dis ; 39(1): 173-182, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37624431

RESUMEN

Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.


Asunto(s)
Enfermedad de Alzheimer , Diterpenos , Enfermedades Neurodegenerativas , Fenantrenos , Humanos , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Transducción de Señal , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Compuestos Epoxi
6.
Neurochem Res ; 49(2): 245-257, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37743445

RESUMEN

Traumatic brain injury (TBI) is a global public safety issue that poses a threat to death, characterized by high fatality rates, severe injuries and low recovery rates. There is growing evidence that necroptosis regulates the pathophysiological processes of a variety of diseases, particularly those affecting the central nervous system. Thus, moderate necroptosis inhibition may be helpful in the management of TBI. Receptor-interacting protein kinase (RIP) 3 is a key mediator in the necroptosis, and its absence helps restore the microenvironment at the injured site and improve cognitive impairment after TBI. In this report, we review different domains of RIP3, multiple analyses of necroptosis, and associations between necroptosis and TBI, RIP3, RIP1, and mixed lineage kinase domain-like. Next, we elucidate the potential involvement of RIP3 in TBI and highlight how RIP3 deficiency enhances neuronal function.


Asunto(s)
Apoptosis , Lesiones Traumáticas del Encéfalo , Humanos , Apoptosis/fisiología , Necroptosis , Sistema Nervioso Central/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Necrosis
7.
Metab Brain Dis ; 39(3): 439-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047978

RESUMEN

Traumatic brain injury (TBI), as a serious central nervous system disease, can result in severe neurological dysfunction or even disability and death of patients. The early and effective intervention of secondary brain injury can improve the prognosis of TBI. Endoplasmic reticulum (ER) stress is one of the main reasons to recover TBI. ER stress inhibition may be beneficial in treating TBI. Sestrin2 is a crucial regulator of ER stress, and its activation can significantly improve TBI. In this paper, we analyze the biological function of sestrin2, the latest findings on ER stress, and the relationship between ER stress and TBI. We elucidate the relationship of sestrin2 inhibiting ER stress via activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (MTORC1) signaling. Finally, we elaborate on the possible role of sestrin2 in TBI and explain how its activation potentially improves TBI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lesiones Traumáticas del Encéfalo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Estrés del Retículo Endoplásmico , Lesiones Traumáticas del Encéfalo/metabolismo , Apoptosis
8.
Mol Cell Biochem ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898578

RESUMEN

Central nervous system (CNS) injury involves complex pathophysiological molecular mechanisms. Long noncoding ribonucleic acids (lncRNAs) are an important form of RNA that do not encode proteins but take part in the regulation of gene expression and various biological processes. Multitudinous studies have evidenced lncRNAs to have a significant role in the process of progression and recovery of various CNS injuries. Herein, we review the latest findings pertaining to the role of lncRNAs in CNS, both normal and diseased state. We aim to present a comprehensive clinical application prospect of lncRNAs in CNS, and thus, discuss potential strategies of lncRNAs in treating CNS injury.

9.
Epigenetics Chromatin ; 16(1): 32, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568210

RESUMEN

BACKGROUND: Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood. RESULTS: We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts. CONCLUSION: Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.


Asunto(s)
Cromatina , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Mol Neurobiol ; 60(11): 6556-6565, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37458986

RESUMEN

Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Axones/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Transporte Axonal , Traumatismos de la Médula Espinal/metabolismo , Adenosina Trifosfato/metabolismo , Regeneración Nerviosa , Médula Espinal/metabolismo
11.
Food Funct ; 14(12): 5537-5550, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37279045

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease (ND). It is the progressive loss of neurons and abnormal accumulation of α-synuclein due to multiple etiologies. Currently, supportive treatment is the only intervention for PD. However, supportive treatment has serious side effects. Ginsenosides, a group of sterol compounds, are the main active ingredients of ginseng. They have a potential role in NDs and psychosis. The brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling pathway is closely related to the growth, survival and differentiation of neurons. Ginsenosides exert a neuroprotective role in NDs and psychosis by upregulating BDNF and activating the BDNF/TrkB signaling pathway. Herein, we analyzed the relationship between ginsenosides, BDNF, the BDNF/TrkB signaling pathway, NDs, and psychosis. We hypothesize that ginsenosides may protect neurons to improve PD by activating the BDNF/TrkB pathway.


Asunto(s)
Ginsenósidos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ginsenósidos/farmacología , Receptor trkB/metabolismo
12.
J Transl Med ; 21(1): 351, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244993

RESUMEN

The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.


Asunto(s)
Enfermedad de Alzheimer , Yodo , Oligoelementos , Humanos , Oligoelementos/metabolismo , Oligoelementos/uso terapéutico , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Molibdeno/uso terapéutico , Yodo/uso terapéutico , Zinc/uso terapéutico , Cobre/metabolismo , Cobre/uso terapéutico
13.
Nat Commun ; 14(1): 1906, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019930

RESUMEN

N6-methyladenosine (m6A) has been increasingly recognized as a new and important regulator of gene expression. To date, transcriptome-wide m6A detection primarily relies on well-established methods using next-generation sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the Oxford Nanopore Technologies (ONT) platform has recently emerged as a promising alternative method to study m6A. While multiple computational tools are being developed to facilitate the direct detection of nucleotide modifications, little is known about the capabilities and limitations of these tools. Here, we systematically compare ten tools used for mapping m6A from ONT DRS data. We find that most tools present a trade-off between precision and recall, and integrating results from multiple tools greatly improve performance. Using a negative control could improve precision by subtracting certain intrinsic bias. We also observed variation in detection capabilities and quantitative information among motifs, and identified sequencing depth and m6A stoichiometry as potential factors affecting performance. Our study provides insight into the computational tools currently used for mapping m6A based on ONT DRS data and highlights the potential for further improving these tools, which may serve as the basis for future research.


Asunto(s)
Nanoporos , ARN , ARN/genética , Transcriptoma , Adenosina/metabolismo , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
14.
Biomed Pharmacother ; 161: 114466, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36870281

RESUMEN

Nerve injury significantly affects human motor and sensory function due to destruction of the integrity of nerve structure. In the wake of nerve injury, glial cells are activated, and synaptic integrity is destroyed, causing inflammation and pain hypersensitivity. Maresin1, an omega-3 fatty acid, is a derivative of docosahexaenoic acid. It has showed beneficial effects in several animal models of central and peripheral nerve injuries. In this review, we summarize the anti-inflammatory, neuroprotective and pain hypersensitivity effects of maresin1 in nerve injury and provide a theoretical basis for the clinical treatment of nerve injury using maresin1.


Asunto(s)
Neuroglía , Traumatismos de los Nervios Periféricos , Animales , Humanos , Inflamación/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Dolor/tratamiento farmacológico , Modelos Animales de Enfermedad
15.
Biomed Pharmacother ; 161: 114515, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913894

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Sirtuina 1/metabolismo
16.
Cell Discov ; 8(1): 138, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575183

RESUMEN

N6-deoxyadenosine methylation (6mA) is the most widespread type of DNA modification in prokaryotes and is also abundantly distributed in some unicellular eukaryotes. However, 6mA levels are remarkably low in mammals. The lack of a precise and comprehensive mapping method has hindered more advanced investigations of 6mA. Here, we report a new method MM-seq (modification-induced mismatch sequencing) for genome-wide 6mA mapping based on a novel detection principle. We found that modified DNA bases are prone to form a local open region that allows capture by antibody, for example, via a DNA breathing or base-flipping mechanism. Specified endonuclease or exonuclease can recognize the antibody-stabilized mismatch-like structure and mark the exact modified sites for sequencing readout. Using this method, we examined the genomic positions of 6mA in bacteria (E. coli), green algae (C. reinhardtii), and mammalian cells (HEK239T, Huh7, and HeLa cells). In contrast to bacteria and green algae, human cells possess a very limited number of 6mA sites which are sporadically distributed across the genome of different cell types. After knocking out the RNA m6A methyltransferase METTL3 in mouse ES cells, 6mA becomes mostly diminished. Our results imply that rare 6mA in the mammalian genome is introduced by RNA m6A machinery via a non-targeted mechanism.

17.
Front Mol Neurosci ; 15: 1043947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311034

RESUMEN

Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.

18.
Biomed Pharmacother ; 156: 113848, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242848

RESUMEN

Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ácido Elágico/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Transducción de Señal/fisiología
19.
Front Mol Neurosci ; 15: 1013033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187352

RESUMEN

Spinal cord injury (SCI) is a high incident rate of central nervous system disease that usually causes paralysis below the injured level. The occurrence of chronic inflammation with the axonal regeneration difficulties are the underlying barriers for the recovery of SCI patients. Current studies have paid attention to controlling the instigative and developmental process of neuro-inflammation. Ethyl pyruvate, as a derivative of pyruvate, has strong anti-inflammatory and neuroprotective functions. Herein, we reviewed the recent studies of ethyl pyruvate and high mobility group box-1 (HMGB1). We think HMGB1 that is one of the main nuclear protein mediators to cause an inflammatory response. This protein induces astrocytic activation, and promotes glial scar formation. Interestingly, ethyl pyruvate has potent inhibitory effects on HMGB1 protein, as it inhibits chronic inflammatory response by modulating the HMGB1/TLR4/NF-κB signaling pathway. This paper discusses the potential mechanism of ethyl pyruvate in inhibiting chronic inflammation after SCI. Ethyl pyruvate can be a prospective therapeutic agent for SCI.

20.
Front Immunol ; 13: 955419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032078

RESUMEN

Immune responses can severely perturb endoplasmic reticulum (ER) function. As a protein-folding factory and dynamic calcium storage compartment, the ER plays a pivotal role in resisting pathogens and in the development of autoimmune diseases and various other diseases, including cancer, cardiovascular, neurological, orthopedic, and liver-related diseases, metabolic disorders, etc. In recent years, an increasing number of studies have shown that extracellular vesicles (EVs) play important roles in these conditions, suggesting that cells carry out some physiological functions through EVs. The formation of EVs is dependent on the ER. ER stress, as a state of protein imbalance, is both a cause and consequence of disease. ER stress promotes the transmission of pathological messages to EVs, which are delivered to target cells and lead to disease development. Moreover, EVs can transmit pathological messages to healthy cells, causing ER stress. This paper reviews the biological functions of EVs in disease, as well as the mechanisms underlying interactions between ER stress and EVs in multiple diseases. In addition, the prospects of these interactions for disease treatment are described.


Asunto(s)
Vesículas Extracelulares , Enfermedades Metabólicas , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Humanos , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...