Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924229

RESUMEN

BACKGROUND: The citrus red mite, Panonychus citri is a serious pest of the citrus industry and has developed resistance to many acaricides. Broflanilide is a novel meta-diamide insecticide that binds to a new site on the γ -aminobutyric acid receptor with high potency against pests. However, little information has been reported about its effect on the citrus red mite. RESULTS: Broflanilide exhibited higher toxicity to female adults and eggs of a laboratory strain of P. citri The median lethal concentration (LC50), 9.769 mg/L and 4.576 mg/L, respectively) than other commonly used acaricides and was also toxic to two P. citri field strains. Broflanilide treatment with LC10, LC20, and LC30 significantly decreased the fecundity and longevity of female adults of F0 P. citri compared with the control. The duration of larva, protonymph, deutonymph and adult, and total life span in the F1 generation were significantly reduced after treatment of F0 with broflanilide. Population parameters, including the intrinsic rate of increase (r) and finite rate of increase (λ), were significantly increased, and the mean generation time (T) of F1 progeny was significantly reduced in the LC20 treatment. The predicted population size of F1 increased when parental female adults were treated with sublethal concentrations. CONCLUSION: Broflanilide had high acaricidal activity toward P. citri, and exposure to a sublethal concentration significantly inhibited the population growth of F0. The transgenerational hormesis effect is likely to cause population expansion of F1. More attention should be paid when broflanilide is applied to control P. citri in citrus orchards. © 2024 Society of Chemical Industry.

2.
Pest Manag Sci ; 80(3): 1258-1265, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37889506

RESUMEN

BACKGROUND: The citrus red mite, Panonychus citri (McGregor), a global pest of citrus, has developed different levels of resistance to various acaricides in the field. Abamectin is one of the most important insecticides/acaricides worldwide, targetting a wide number of insect and mite pests. The evolution of abamectin resistance in P. citri is threatening the sustainable use of abamectin for mite control. RESULTS: The abamectin resistant strain (NN-Aba), derived from a field strain NN by consistent selection with abamectin, showed 4279-fold resistance to abamectin compared to a relatively susceptible strain (SS) of P. citri. Cross-resistance of NN-Aba was observed between abamectin and emamectin benzoate, pyridaben, fenpropathrin and cyflumetofen. Inheritance analyses indicated that abamectin resistance in the NN-Aba strain was autosomal, incompletely recessive and polygenic. The synergy experiment showed that abamectin toxicity was synergized by piperonyl butoxide (PBO), diethyl maleate (DEM) and tributyl phosphorotrithiotate (TPP) in the NN-Aba strain, and synergy ratios were 2.72-, 2.48- and 2.13-fold, respectively. The glutathione-S-transferases activity in the NN-Aba strain were significantly increased by 2.08-fold compared with the SS strain. CONCLUSION: The abamectin resistance was autosomal, incompletely recessive and polygenic in P. citri. The NN-Aba strain showed cross-resistance to various acaricides with different modes of action. Metabolic detoxification mechanism participated in abamectin resistance in NN-Aba strain. These findings provide useful information for resistance management of P. citri in the field. © 2023 Society of Chemical Industry.


Asunto(s)
Acaricidas , Citrus , Ivermectina/análogos & derivados , Ácaros , Tetranychidae , Animales , Acaricidas/farmacología
3.
Pest Manag Sci ; 79(3): 996-1004, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36318043

RESUMEN

BACKGROUND: Panonychus citri is a major citrus pest worldwide. The short life cycle and high reproductive potential of P. citri, combined with heavy acaricide use, have led to high levels of resistance to acaricides, posing a threat to global resistance management programs. Here, resistance monitoring was established to determine the pyridaben resistance status of ten P. citri populations in China from 2014 to 2021 using a leaf-dipping assay. Four characterized strains-the susceptible strain (Lab_S), the resistant strain (Pyr_R), as well as the segregated resistant strain (Pyr_Rs) and the segregated susceptible strain (Pyr_Control) derived from the crossing of the Lab_S and Pyr_R strains, were used to evaluate the life-history characteristics using age-stage, two-sex life tables. RESULTS: Most P. citri populations developed high resistance to pyridaben. Resistance levels exceeded 1000-fold in Yuxi, Anyue, Nanning, and Ganzhou populations compared with the Lab_S strain. Compared with Pyr_Control, two key fitness cost criteria, developmental period and fecundity, showed significant differences in Pyr_Rs under consistent conditions. The intrinsic rate of increase, net reproductive rate and gross reproductive rate were lower in the resistant strain compared with the Pyr_Control strain. The Pyr_Rs strain had a lower relative fitness of 0.934 compared with the Pyr_Control. Moreover, the life-history traits and population parameters of the Pyr_R strain also showed significant differences compared with the Lab_S strain. CONCLUSION: The resistance levels to pyridaben varied greatly among the different P. citri populations and showed regional differences. Substantial fitness costs are associated with pyridaben resistance. This study provides potential implications for developing strategies for resistance management in P. citri. © 2022 Society of Chemical Industry.


Asunto(s)
Acaricidas , Piridazinas , Tetranychidae , Animales , Acaricidas/farmacología , China
4.
Insect Sci ; 29(2): 430-442, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34015180

RESUMEN

Spider mites have one ecdysone receptor (EcR) and multiple retinoid X receptors (RXRs). However, the function of these RXRs in spider mite development is unknown. Here, we screened the expression dynamics of two PcRXR isoforms at 4 h intervals in the deutonymphal stage of Panonychus citri. The results showed that PcEcR had an expression pattern similar to that of PcRXR2. For PcRXR1, its expression remained at a certain high level, when there was a decrease of both PcEcR and PcRXR2. In situ hybridization showed that PcRXR2 was detected in the central nervous mass, while the ecdysteroid biosynthesis gene PcSpo was mainly expressed at the edge of the central nervous mass. RNAi-based silencing of PcRXR1 or PcRXR2 showed the same phenotype as in mites with that of silencing PcEcR. Furthermore, RNA-seq was used to mine the genes associated with the expression dynamics of PcRXR1 or PcRXR2, which revealed that the heterodimer of EcR-RXR2 in spider mites might be linked with the cell autophagy and tissue remodeling during apolysis, and RXR1 might be linked with new epicuticle and exocuticle secretion during ecdysis. Taken together, these results increase our understanding of the regulation mechanism of ecdysteroid signal pathway in spider mite development.


Asunto(s)
Ácaros , Tetranychidae , Animales , Ecdisteroides , Muda/genética , Interferencia de ARN , Tetranychidae/genética
5.
J Econ Entomol ; 114(6): 2543-2552, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34668540

RESUMEN

Eotetranychus kankitus is an important mite pest in citrus, but molecular data on the developmental processes of E. kankitus are lacking. The different development stages mix of E. kankitus was used to sequence for transcriptome and small RNAs to identify genes and predict miRNAs associated with sesquiterpenoid and ecdysteroid biosynthesis and signaling pathways. More than 36 million clean reads were assembled and 67,927 unigenes were generated. Of the unigenes, 19,300 were successfully annotated through annotation databases NR, SwissProt, COG, GO, KEGG, PFAM, and KOG. The transcripts were involved in sesquiterpenoid biosynthesis (11 genes) and ecdysteroid biosynthesis and signaling pathway (13 genes). Another, small RNA library was obtained and 31 conserved miRNAs were identified. Five most abundant miRNAs were Ek-miR-5735, Ek-miR-1, Ek-miR-263a, Ek-miR-184, and Ek-miR-8. The target genes related to sesquiterpenoid and ecdysteroid showed that 10 of the conserved miRNAs could potentially target the sesquiterpenoid and ecdysteroid pathway according to four-prediction software, sRNAT, miRanda, RNAhybrid, and Risearch2. Thus, the results of this study will provide bioinformatics information for further molecular studies of E. kankitus which may facilitate improved pest control strategies.


Asunto(s)
MicroARNs , Sesquiterpenos , Tetranychidae , Animales , Ecdisteroides , Perfilación de la Expresión Génica , MicroARNs/genética , Anotación de Secuencia Molecular , RNA-Seq , Tetranychidae/genética , Transcriptoma
6.
Exp Appl Acarol ; 81(1): 75-83, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32277324

RESUMEN

Ecdysteroids regulate molting in arthropods by binding to heterodimers of the ecdysone receptor and retinoid-X-receptor, homologous to the ultraspiracle protein, to induce the expression of downstream signal response genes including the nuclear receptor HR3. However, the detailed expression dynamics of HR3 during molting in spider mites are not yet clear. In this study, the full length of PcHR3 was retrieved based on the genome of citrus red mite, Panonychus citri. The open reading frame is 1707 bp encoding 568 amino acids, which contains a DNA binding domain and a ligand binding domain. Then, the expression pattern of PcHR3 was analyzed throughout the development of the deutonymph by RT-qPCR. The result showed that PcHR3 was mainly transcribed in the late deutonymph stage, when the deutonymph was at least 24 h old and motionless, the critical point at which the mites started molting. Transcription reached the highest level in 32-h-old deutonymphs and decreased by 36 h, where the mites remained in a quiescent state. Further silencing of PcHR3 by leaf-disc-based delivery of dsRNA to 8-h-old deutonymph mites, resulted in retarded development and death of 58% of deutonymphs. In summary, we suggest that PcHR3 regulates the latter stages of molting in P. citri.


Asunto(s)
Muda , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/fisiología , Tetranychidae , Animales , Proteínas de Artrópodos/antagonistas & inhibidores , Proteínas de Artrópodos/fisiología , Ecdisteroides , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores
7.
Exp Appl Acarol ; 78(3): 361-372, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31254229

RESUMEN

In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.


Asunto(s)
Proteínas de Artrópodos/genética , Ecdisteroides/biosíntesis , Expresión Génica , Hormonas Juveniles/biosíntesis , Muda/genética , Tetranychidae/genética , Animales , Proteínas de Artrópodos/metabolismo , Ecdisteroides/genética , Hormonas Juveniles/genética , Larva/genética , Larva/crecimiento & desarrollo , Ninfa/genética , Ninfa/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Tetranychidae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA