Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroimage Clin ; 43: 103636, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38950504

RESUMEN

The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.

2.
Physiol Plant ; 176(4): e14411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973028

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Asunto(s)
Arabidopsis , Bacillus licheniformis , Etilenos , Poliaminas , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/fisiología , Etilenos/metabolismo , Poliaminas/metabolismo , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/metabolismo , Álcalis/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Langmuir ; 40(28): 14623-14632, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38966998

RESUMEN

The toxic gases emitted from industrial production have caused significant damage to the environment and human health, necessitating efficient gas sensors for their detection and removal. In this work, first-principles calculations are employed to investigate the potential application of diamanes for high-performance toxic gas sensors. The results show that nine gas molecules (CO, CO2, NO, NO2, NH3, SO2, N2, O2, and H2O) are physisorbed on pristine diamane by weak van der Waals interactions. After introducing H/F defects, diamane can effectively capture specific toxic gases (CO, NO, NO2, and SO2) in the presence of interfering gases (N2, O2, and H2O), suggesting excellent selectivity and anti-interference ability. Orbital hybridization and significant charge redistribution between gas molecules and defective diamane dominate the enhanced adsorbate-substrate interactions. More importantly, the high sensitivity and good reversibility of defective diamane for detecting CO, NO, and SO2 molecules enable its reuse as a superior resistance-type gas sensor. Our calculations provide valuable insights into the potential of defective diamane for detecting toxic gases and shed light on the practical application of novel carbon-based materials in the gas-sensing field.

4.
ChemSusChem ; : e202400840, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924365

RESUMEN

Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POxn-and SOxn-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168 mAh g-1 at 0.1 C and a high capacity retention >80% after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.

5.
Adv Mater ; : e2312812, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839075

RESUMEN

High-performance lithium metal anodes are crucial for the development of advanced Li metal batteries. Herein, this work reports a novel plasma coupled electrolyte additive strategy to prepare high-quality composite solid electrolyte interphase (SEI) on Li metal to achieve enhanced performance and stability. With the guidance of calculations, this work selects diethyl dibromomalonate (DB) as an additive to optimize the solvation structure of electrolytes to modify the SEI. Meanwhile, this work groundbreakingly develops DB plasma technology coupled with DB electrolyte additive to construct a combinatorial SEI: inner plasma-induced SEI layer composed of LiBr and Li2CO3 plus additive-reduced SEI containing LiBr/Li2CO3/organic lithium compounds as an outer compatible layer. The optimized hybrid SEI has strong affinity toward Li+ and good mechanical properties, thereby inducing horizontal dispersion and uniform deposition of Li+ and keep structure stable. Accordingly, the symmetrical cells exhibit enhanced cycling stability for 1200 h at an overpotential of 23.8 mV with average coulombic efficiency (99.51%). Additionally, the full cells with LiNi0.8Co0.1Mn0.1O2 cathode deliver a capacity retention of 81.7% after 300 cycles at 0.5 C, and the pouch cell achieves a volumetric specific energy of ≈664 Wh L‒1. This work provides new enlightenment on plasma technology for fabrication of advanced metal anodes for energy storage.

6.
Small ; : e2402862, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888118

RESUMEN

Lithium-sulfur (Li-S) batteries are expected to be the next-generation energy storage system due to the ultrahigh theoretical energy density and low cost. However, the notorious shuttle effect of higher-order polysulfides and the uncontrollable lithium dendrite growth are the two biggest challenges for commercially viable Li-S batteries. Herein, these two main challenges are solved by in situ polymerization of bi-functional gel polymer electrolyte (GPE). The initiator (SiCl4) not only drives the polymerization of 1,3-dioxolane (DOL) but also induces the construction of a hybrid solid electrolyte interphase (SEI) with inorganic-rich compositions on the Li anode. In addition, diatomaceous earth (DE) is added and anchored in the GPE to obtain PDOL-SiCl4-DE electrolyte through in situ polymerization. Combined with density functional theory (DFT) calculations, the hybrid SEI provides abundant adsorption sites for the deposition of Li+, inhibiting the growth of lithium dendrites. Meanwhile, the shuttle effect is greatly alleviated due to the strong adsorption capacity of DE toward lithium polysulfides. Therefore, the Li/Li symmetric cell and Li-S full cell assembled with PDOL-SiCl4-DE exhibit excellent cycling stability. This study offers a valuable reference for the development of high performance and safe Li-S batteries.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38700591

RESUMEN

PURPOSE: To identify the types of viral infection in aqueous humor (AqH) among patients diagnosed as Fuchs uveitis syndrome (FUS) or Posner-Schlossman syndrome (PSS) and investigate their relevance to clinical manifestations and visual outcome. METHODS: A total of 375 patients and 171 patients were diagnosed as FUS or PSS in our department. AqH and serum samples from 68 FUS patients and 16 PSS patients were obtained during eye surgery. The viral etiologies, clinical features, auxiliary tests and visual prognosis of patients with FUS or PSS who underwent AqH analysis were analysed and compared. RESULTS: Among 68 FUS patients, rubella virus (RV), cytomegalovirus (CMV), herpes simplex virus (HSV) and varicella-zoster virus were identified in 17, 11, 1 and 1 patients, respectively. Seven patients with CMV and 1 with HSV were identified in 16 PSS patients. In both FUS and PSS groups, virus-associated eyes had higher proportion of secondary glaucoma and worse visual prognosis as compared with non-virus-associated eyes (all P < 0.05). In FUS group, specifically, CMV infection manifested as more obvious anterior segment inflammation and lower corneal endothelial cell density (CECD). RV infection showed a higher percentage of vitritis. In PSS group, CMV-associated PSS had a lower retinal nerve fiber layer thickness and CECD, worse visual prognosis as compared with non-virus-associated PSS (all P < 0.05). CONCLUSION: Our study identified 4 types of viral infection in FUS and 2 types of viral infection in PSS. Virus-associated patients are usually associated with more obvious clinical signs and poor visual prognosis.

8.
Chem Sci ; 15(19): 7150-7159, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756810

RESUMEN

An oxidative strategy for the preparation of dihydrobenzofurans via heterogeneous photocatalysis is reported. This method leverages the surface interaction between the alkenyl phenol and the TiO2 solid surface, which enables direct activation by visible light without the need for pre-functionalization or surface modification. The resulting alkenyl phenoxyl radical is proposed to be selectively captured by a neutral phenol nucleophile, rendering ß-5' coupling with excellent chemo- and regio-selectivity. The reaction proceeds under benign conditions, using an inexpensive, nontoxic, and recyclable photocatalyst under visible light irradiation with air as the terminal oxidant at room temperature.

9.
Transl Stroke Res ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678526

RESUMEN

Excessive inflammatory response following ischemic stroke (IS) injury is a key factor affecting the functional recovery of patients. The efferocytic clearance of apoptotic cells within ischemic brain tissue is a critical mechanism for mitigating inflammation, presenting a promising avenue for the treatment of ischemic stroke. However, the cellular and molecular mechanisms underlying efferocytosis in the brain after IS and its impact on brain injury and recovery are poorly understood. This study explored the roles of inflammation and efferocytosis in IS with bioinformatics. Three Gene Expression Omnibus Series (GSE) (GSE137482-3 m, GSE137482-18 m, and GSE30655) were obtained from NCBI (National Center for Biotechnology Information) and GEO (Gene Expression Omnibus). Differentially expressed genes (DEGs) were processed for GSEA (Gene Set Enrichment Analysis), GO (Gene Ontology Functional Enrichment Analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses. Efferocytosis-related genes were identified from the existing literature, following which the relationship between Differentially Expressed Genes (DEGs) and efferocytosis-related genes was examined. The single-cell dataset GSE174574 was employed to investigate the distinct expression profiles of efferocytosis-related genes. The identified hub genes were verified using the dataset of human brain and peripheral blood sample datasets GSE56267 and GSE122709. The dataset GSE215212 was used to predict competing endogenous RNA (ceRNA) network, and GSE231431 was applied to verify the expression of differential miRNAs. At last, the middle cerebral artery (MCAO) model was established to validate the efferocytosis process and the expression of hub genes. DEGs in two datasets were significantly enriched in pathways involved in inflammatory response and immunoregulation. Based on the least absolute shrinkage and selection operator (LASSO) analyses, we identified hub efferocytosis-related genes (Abca1, C1qc, Ptx3, Irf5, and Pros1) and key transcription factors (Stat5). The scRNA-seq analysis showed that these hub genes were mainly expressed in microglia and macrophages which are the main cells with efferocytosis function in the brain. We then identified miR-125b-5p as a therapeutic target of IS based on the ceRNA network. Finally, we validated the phagocytosis and clearance of dead cells by efferocytosis and the expression of hub gene Abca1 in MCAO mice models.

10.
Genet Epidemiol ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644517

RESUMEN

The genome-wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type-I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective-risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption-free model built upon data-consistent inversion (DCI), which is a recently developed measure-theoretic framework utilized for uncertainty quantification. This proposed DCI-derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI-derived model to cover all genetic variants without emphasizing on additivity of the classic-GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type-I error rate at least as well as the classic-GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.

11.
ACS Nano ; 18(11): 8463-8474, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451076

RESUMEN

All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted wide attention due to their ultrahigh theoretical energy density and the ability of completely avoiding the shuttle effect. However, the further development of ASSLSBs is limited by the poor kinetic properties of the solid electrode interface. It remains a great challenge to achieve good kinetic properties, by common strategies to substitute sulfur-transition metal and organosulfur composites for sulfur without reducing the specific capacity of ASSLSBs. In this study, a sulfur-(Ketjen Black)-(bistrifluoromethanesulfonimide lithium salt) (S-KB-LiTFSI) composite is constructed by introducing LiTFSI into the S-KB composite. The initial discharge capacity reaches up to 1483 mA h g-1, benefited from the improved ionic conductivity and diffusion kinetics of the S-KB-LiTFSI composite, where numerous LiF interphases with a Li3N component are in situ formed during cycling. Combined with DFT calculations, it is found that the migration barriers of LiF and Li3N are much smaller than that of the Li6PS5Cl solid electrolyte. The fast ionic conductors of LiF and Li3N not only enhance the Li+ transfer efficiency but also improve the interfacial stability. Therefore, the assembled ASSLSBs operate stably for 600 cycles at 200 mA g-1, and this study provides an effective strategy for the further development of ASSLSBs.

12.
Chem Commun (Camb) ; 60(13): 1754-1757, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38249109

RESUMEN

Backbone-enabled site-selective modification of peptides with benzoquinone via Pd-catalyzed δ-C(sp2)-H functionalization has been achieved. The amide groups of peptides serve as internal directional groups, facilitating C-H functionalization through a kinetically less favored six-membered palladacycle. This methodology presents novel opportunities for the late-stage site-selective diversification of peptides.

13.
Small ; 20(11): e2306690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926792

RESUMEN

Non-aqueous solvents, in particular N,N-dimethylaniline (NMP), are widely applied for electrode fabrication since most sodium layered oxide cathode materials are readily damaged by water molecules. However, the expensive price and poisonousness of NMP unquestionably increase the cost of preparation and post-processing. Therefore, developing an intrinsically stable cathode material that can implement the water-soluble binder to fabricate an electrode is urgent. Herein, a stable nanosheet-like Mn-based cathode material is synthesized as a prototype to verify its practical applicability in sodium-ion batteries (SIBs). The as-prepared material displays excellent electrochemical performance and remarkable water stability, and it still maintains a satisfactory performance of 79.6% capacity retention after 500 cycles even after water treatment. The in situ X-ray diffraction (XRD) demonstrates that the synthesized material shows an absolute solid-solution reaction mechanism and near-zero-strain. Moreover, the electrochemical performance of the electrode fabricated with a water-soluble binder shows excellent long-cycling stability (67.9% capacity retention after 500 cycles). This work may offer new insights into the rational design of marvelous water stability cathode materials for practical SIBs.

14.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139082

RESUMEN

Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.


Asunto(s)
Apoptosis , Ghrelina , Ghrelina/farmacología , Ghrelina/metabolismo , Piroptosis , Transducción de Señal , Autofagia
15.
Phys Chem Chem Phys ; 25(36): 24518-24525, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37656439

RESUMEN

In this work, the structural, electronic and mechanical properties of fluorinated diamane (F-diamane) with N and B dopants are systemically investigated using first-principles calculation. The N atom tends to stay in the external substituted site without F saturation, while the B-doped structure of the substituted external site with F saturation is the most stable. Ab initio molecular dynamics simulations confirm the thermal stability. The band structures of stable doped structures are similar to that of pristine F-diamane, due to the slight contribution of the dopant to the band edges. In addition, after the introduction of the B dopant, the formation energy reduces, and the transition barrier of graphene bilayers into diamane is smaller, indicating the feasibility of graphene bilayer fluoridation. Furthermore, we find that these doped structures have mechanical stability with isotropic elastic constants, Young's modulus, shear modulus and Poisson's ratio. Our work would promote the synthesis and development of two-dimensional diamane.

16.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447314

RESUMEN

Dysregulation of lipid metabolism has been implicated in age-related macular degeneration (AMD), the leading cause of blindness among the elderly. Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for lipid metabolism, which could be regulated by DNA methylation during the development of various age-related diseases. This study aimed to assess the association between LCAT DNA methylation and the risk of AMD, and to examine whether plasma vitamin and carotenoid concentrations modified this association. A total of 126 cases of AMD and 174 controls were included in the present analysis. LCAT DNA methylation was detected by quantitative real-time methylation-1specific PCR (qMSP). Circulating vitamins and carotenoids were measured using reversed-phase high-performance liquid chromatography (RP-HPLC). DNA methylation of LCAT was significantly higher in patients with AMD than those in the control subjects. After multivariable adjustment, participants in the highest tertile of LCAT DNA methylation had a 5.37-fold higher risk (95% CI: 2.56, 11.28) of AMD compared with those in the lowest tertile. Each standard deviation (SD) increment of LCAT DNA methylation was associated with a 2.23-fold (95% CI: 1.58, 3.13) increased risk of AMD. There was a J-shaped association between LCAT DNA methylation and AMD risk (Pnon-linearity = 0.03). Higher concentrations of plasma retinol and ß-cryptoxanthin were significantly associated with decreased levels of LCAT DNA methylation, with the multivariate-adjusted ß coefficient being -0.05 (95% CI: -0.08, -0.01) and -0.25 (95% CI: -0.42, -0.08), respectively. In joint analyses of LCAT DNA methylation and plasma vitamin and carotenoid concentrations, the inverse association between increased LCAT DNA methylation and AMD risk was more pronounced among participants who had a lower concentration of plasma retinol and ß-cryptoxanthin. These findings highlight the importance of comprehensively assessing LCAT DNA methylation and increasing vitamin and carotenoid status for the prevention of AMD.


Asunto(s)
Degeneración Macular , Vitaminas , Humanos , Anciano , Carotenoides , Vitamina A , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Metilación de ADN , beta-Criptoxantina , Degeneración Macular/prevención & control , Vitamina K
17.
Small ; 19(42): e2303210, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330662

RESUMEN

The use of poly(1,3-dioxolane) (PDOL) electrolyte for lithium batteries has gained attention due to its high ionic conductivity, low cost, and potential for large-scale applications. However, its compatibility with Li metal needs improvement to build a stable solid electrolyte interface (SEI) toward metallic Li anode for practical lithium batteries. To address this concern, this study utilized a simple InCl3 -driven strategy for polymerizing DOL and building a stable LiF/LiCl/LiIn hybrid SEI, confirmed through X-ray photoelectron spectroscopy (XPS) and cryogenic-transmission electron microscopy (Cryo-TEM). Furthermore, density functional theory (DFT) calculations and finite element simulation (FES) verify that the hybrid SEI exhibits not only excellent electron insulating properties but also fast transport properties of Li+ . Moreover, the interfacial electric field shows an even potential distribution and larger Li+ flux, resulting in uniform dendrite-free Li deposition. The use of the LiF/LiCl/LiIn hybrid SEI in Li/Li symmetric batteries shows steady cycling for 2000 h, without experiencing a short circuit. The hybrid SEI also provided excellent rate performance and outstanding cycling stability in LiFePO4 /Li batteries, with a high specific capacity of 123.5 mAh g-1 at 10 C rate. This study contributes to the design of high-performance solid lithium metal batteries utilizing PDOL electrolytes.

18.
Food Chem Toxicol ; 177: 113855, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37230459

RESUMEN

Foxtail millet is a traditional excellent crop with high nutritional value in the world, belong to cereals. The bran of foxtail millet is rich in polyphenol that has antioxidant, anti-inflammatory, and anti-tumorigenic effects. Previously, we extracted bound polyphenols from the inner shell of foxtail millet bran (BPIS). Here, we report that BPIS specifically induced breast cancer cell death and elevated the autophagy level simultaneously. The addition of an autophagy inhibitor blocked BPIS-induced breast cancer cell death, indicating that excessive autophagy induced cell death. Furthermore, oil red O and BODIPY staining also confirmed that lipids, which are important inducers of autophagy, accumulated in breast cancer cells treated with BPIS. Lipidomics research revealed that glycerophospholipids were the main accumulated lipids induced by BPIS. Further study showed that elevated PCYT1A expression was responsible for glycerophospholipid accumulation, and BPIS contained ferulic acid and p-coumaric acid, which induced PCYT1A expression and breast cancer cell death. Collectively, our results revealed that BPIS resulted in autophagic death by enhancing lipid accumulation in breast cancer cells, and BPIS contains ferulic acid and p-coumaric acid, which provided new insights into developing nutraceuticals and drugs for breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Setaria (Planta) , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Setaria (Planta)/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Lípidos
19.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047679

RESUMEN

As key regulators of the Jasmonates (JAs) signal transduction pathway, JAZ protein, and MYC transcription factors are imperative for plant response to external environmental changes, growth, and development. In this study, 18 StJAZs and 12 StMYCs were identified in potatoes. Their chromosomal position, phylogenetic development, gene structure, and promoter cis-acting parts of the StJAZ genes were analyzed. In addition, Protein-Protein Interaction (PPI) network analysis of StJAZ and StMYC gene families and yeast two-hybrid assay demonstrated that five StMYCs can interact with 16 StJAZs, which provides new insights into the operation mechanism of StJAZs and StMYCs in JA signal response. Moreover, we explored the expression profiles of StJAZs and StMYCs genes in different tissues and during abiotic stresses by RNA-seq data. Based on the PPI network and transcriptome data, the genes StJAZ11, StJAZ16, and StMYC6 were chosen for further qRT-PCR study under salt or mannitol treatment. Under mannitol-induced drought or salinity treatment, the expression patterns of StMYC6, StJAZ11, and StJAZ16 were different, indicating that the JAZ protein and MYC transcription factor may be engaged in the response of potatoes to abiotic stress, which opened up a new research direction for the genetic improvement of potatoes in response to environmental stress.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , RNA-Seq , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Clin Immunol ; 250: 109323, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019422

RESUMEN

DNA 5-Hydroxymethylcytosine (5-hmC), an oxidative reaction mediated by the ten-eleven translocation (TET) family, has been reported to play an essential role in the progression of auto-inflammatory and autoimmune diseases. By far, little is known about the effect of DNA 5-hmC and the TET family on the development of Vogt-Koyanagi-Harada (VKH) disease. In this study, we discovered that the global DNA 5-hmC level and the TET activity were elevated in association with the up-regulated expression of TET2 at both mRNA and protein levels in CD4+T cells from active VKH patients compared to healthy controls. Integrated analysis of DNA 5-hmC pattern and transcription profile of CD4+ T cells revealed that 6 candidate target genes were involved in the development of VKH disease. The promoter 5-hmC and mRNA levels of leucine rich repeat containing 39 (LRRC39) were verified to be elevated in active VKH patients. Functional experiments showed that TET2 could up-regulate LRRC39 mRNA expression by increasing the promoter 5-hmC level of LRRC39 in CD4+ T cells from active VKH patients. Up-regulated LRRC39 expression could increase the frequencies of IFN-γ+ and IL-17+ CD4+ T cells as well as the secretions of IFN-γ and IL-17 in association with the decreased frequency of CD4+CD25+FOXP3+ regulatory T (Treg) cells and the reduced production of IL-10. Additionally, restoration of LRRC39 rescued TET2-silencing-mediated reduced frequency of IFN-γ+ CD4+ T cells and increased frequency of CD4+CD25+FOXP3+ Treg cells. Collectively, our study reveals a novel axis, the TET2-5-hmC-LRRC39-Th1/Treg responses axis, in the pathogenesis of VKH and provides a potential target for further investigation into the epigenetic therapy of this disease.


Asunto(s)
Dioxigenasas , Síndrome Uveomeningoencefálico , Humanos , Linfocitos T CD4-Positivos , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Interleucina-17/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T Reguladores/metabolismo , Regulación hacia Arriba , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...