Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Zookeys ; 1203: 239-251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855790

RESUMEN

Taenioides sp. is a small temperate fish originally known to inhabit muddy bottoms of brackish waters in coastal areas of China. However, it began to invade multiple inland freshwaters and caused severe damage to Chinese aquatic ecosystems in recent years. To investigate the sources and invasive history of this species, we examined the population structure of 141 individuals collected from seven locations based on partial mitochondrial D-loop regions. The results revealed that the genetic diversity gradually decreased from south to north, with the Yangtze River Estuary and Taihu Lake populations possessing the highest haplotype diversity (Hd), average number of differences (k), and nucleotide diversity (π) values, suggesting that they may be the sources of Taenioides sp. invasions. Isolation-by-distance analysis revealed a non-significant correlation (p = 0.166) between genetic and geographic distances among seven populations, indicating that dispersal mediated through the regional hydraulic projects may have played an essential role in Taenioides sp. invasions. The population genetic structure analysis revealed two diverged clades among seven populations, with clade 2 only detected in source populations, suggesting a possible difference in the invasion ability of the two clades. Our results provide insights into how native estuary fish become invasive through hydraulic projects and may provide critical information for the future control of this invasive species.

2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 512-518, 2024 Jun 18.
Artículo en Chino | MEDLINE | ID: mdl-38864138

RESUMEN

OBJECTIVE: To investigate the characteristics of the CD8+ T cells infiltration from the 4 subtypes in medulloblastoma (MB), to analyze the relationship between CD8+ T cells infiltration and prognosis, to study the function of C-X-C motif chemokine ligand 11 (CXCL11) and its receptor in CD8+ T cells infiltration into tumors and to explore the potential mechanism, and to provide the necessary clinicopathological basis for exploring the immunotherapy of MB. METHODS: In the study, 48 clinical MB samples (12 cases in each of 4 subtypes) were selected from the multiple medical center from 2012 to 2019. The transcriptomics analysis for the tumor of 48 clinical samples was conducted on the NanoString PanCancer IO360TM Panel (NanoString Technologies). Immunohistochemistry (IHC) staining of formalin-fixed, paraffin-embedded sections from MB was carried out using CD8 primary antibody to analyze diffe-rential quantities of CD8+ T cells in the MB four subtypes. Through bioinformatics analysis, the relationship between CD8+T cells infiltration and prognosis of the patients and the expression differences of various chemokines in the different subtypes of MB were investigated. The expression of CXCR3 receptor on the surface of CD8+T cells in MB was verified by double immunofluorescence staining, and the underlying molecular mechanism of CD8+T cells infiltration into the tumor was explored. RESULTS: The characteristic index of CD8+T cells in the WNT subtype of MB was relatively high, suggesting that the number of CD8+T cells in the WNT subtype was significantly higher than that in the other three subtypes, which was confirmed by CD8 immunohistochemical staining and Gene Expression Omnibus (GEO) database analysis by using R2 online data analysis platform. And the increase of CD8+T cells infiltration was positively correlated with the patient survival. The expression level of CXCL11 in the WNT subtype MB was significantly higher than that of the other three subtypes. Immunofluorescence staining showed the presence of CXCL11 receptor, CXCR3, on the surface of CD8+T cells, suggesting that the CD8+T cells might be attracted to the MB microenvironment by CXCL11 through CXCR3. CONCLUSION: The CD8+T cells infiltrate more in the WNT subtype MB than other subtypes. The mechanism may be related to the activation of CXCL11-CXCR3 chemokine system, and the patients with more infiltration of CD8+T cells in tumor have better prognosis. This finding may provide the necessary clinicopathological basis for the regulatory mechanism of CD8+T cells infiltration in MB, and give a new potential therapeutic target for the future immunotherapy of MB.


Asunto(s)
Linfocitos T CD8-positivos , Quimiocina CXCL11 , Meduloblastoma , Receptores CXCR3 , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Meduloblastoma/inmunología , Meduloblastoma/patología , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/genética , Pronóstico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/metabolismo , Masculino , Femenino
3.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893498

RESUMEN

Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.


Asunto(s)
Polisacáridos , Reología , Semillas , Almidón , Tamarindus , Temperatura , Tamarindus/química , Polisacáridos/química , Semillas/química , Viscosidad , Almidón/química , Fenómenos Químicos
4.
Int J Biol Macromol ; 269(Pt 2): 132003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697426

RESUMEN

Self-assembled protein fibers have attracted much attention in the fields of medicine and food because of their high aspect ratio, polymorphic structure and strong surface hydrophobicity. In this study, three different gelation types of polysaccharides/ß-lactoglobulin fiber (Fblg) composite gels, including ionic alginate-Fblg gels, synergistic xanthan-Fblg gels, and double network agar-Fblg gels, were first prepared. The interactions between the polysaccharides and the Fblgs, the microstructure and mechanical properties of the composite gels were investigated using the light scattering, scanning electron microscopy, rheology and texture analysis in order to reveal their formation mechanisms. Then the loading and release properties of the water-soluble drug 5-fluorouracil (5-FU) and the hydrophobic drug curcumin (Cur) through these composite gels were further studied with release mechanisms determined by fitting different release models. It was found that the mechanical properties of the composite gels were determined by the mesh density of the three-dimensional networks formed inside the gels. The network structure and mechanical strength of the alginate-Fblg gels became weaker with the increase of Fblg content at pH 4 due to their attractive interaction which hindered the binding of Ca2+ to ALG, while the network and the strength of the alginate-Fblg gels didn't change much at pH 7 due to the repulsion between Alg and Fblg. The xanthan-Fblg gels formed lamellar structures with enhanced gel network and mechanical strength due to the hydrogen bonding and the electrostatic interaction with Fblg. The Agar-Fblg composite gel formed at 60 °C (above the gelation temperature of agar of 40 °C) had a denser double network structure and higher mechanical strength than that formed at 0 °C due to inhibition of diffusion of Ca2+ as salt bridges for Fblg. The hydrophilic drugs were loaded in the meshes of the composite gels and their release was determined by the structure of the composite gel networks, whereas the hydrophobic drugs were loaded by attaching to the Fblgs in the composite gels and their release was determined by the loading ability and strength of the gels. The study not only provided a new idea for the preparation and application of polysaccharide-protein fiber composite hydrogels, but also provided insights for improving the efficiency of drug carriers.


Asunto(s)
Liberación de Fármacos , Geles , Lactoglobulinas , Polisacáridos , Lactoglobulinas/química , Geles/química , Polisacáridos/química , Reología , Alginatos/química , Portadores de Fármacos/química , Fluorouracilo/química , Curcumina/química , Concentración de Iones de Hidrógeno , Polisacáridos Bacterianos/química , Interacciones Hidrofóbicas e Hidrofílicas
5.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710565

RESUMEN

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Asunto(s)
Galactanos , Sustancias Húmicas , Hidrogeles , Mananos , Gomas de Plantas , Compuestos de Amonio Cuaternario , Suelo , Gomas de Plantas/química , Galactanos/química , Mananos/química , Hidrogeles/química , Suelo/química , Compuestos de Amonio Cuaternario/química , Fertilizantes , Preparaciones de Acción Retardada/química , Germinación/efectos de los fármacos , Agua/química
6.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473771

RESUMEN

Drip irrigation with brackish water increases the risk of soil salinization while alleviating water shortage in arid areas. In order to alleviate soil salinity stress on crops, polymer soil amendments are increasingly used. But the regulation mechanism of a polymer soil amendment composed of polyacrylamide polyvinyl alcohol, and manganese sulfate (PPM) on rapeseed photosynthesis under drip irrigation with different types of brackish water is still unclear. In this field study, PPM was applied to study the responses of the rapeseed (Brassica napus L.) phenotype, photosynthetic physiology, transcriptomics, and metabolomics at the peak flowering stage under drip irrigation with water containing 6 g·L-1 NaCl (S) and Na2CO3 (A). The results showed that the inhibitory effect of the A treatment on rapeseed photosynthesis was greater than that of the S treatment, which was reflected in the higher Na+ content (73.30%) and lower photosynthetic-fluorescence parameters (6.30-61.54%) and antioxidant enzyme activity (53.13-77.10%) of the A-treated plants. The application of PPM increased the biomass (63.03-75.91%), photosynthetic parameters (10.55-34.06%), chlorophyll fluorescence parameters (33.83-62.52%), leaf pigment content (10.30-187.73%), and antioxidant enzyme activity (28.37-198.57%) under S and A treatments. However, the difference is that under the S treatment, PPM regulated the sulfur metabolism, carbon fixation and carbon metabolism pathways in rapeseed leaves. And it also regulated the photosynthesis-, oxidative phosphorylation-, and TCA cycle-related metabolic pathways in rapeseed leaves under A treatment. This study will provide new insights for the application of polymer materials to tackle the salinity stress on crops caused by drip irrigation with brackish water, and solve the difficulty in brackish water utilization.


Asunto(s)
Brassica napus , Brassica rapa , Antioxidantes , Multiómica , Fotosíntesis , Productos Agrícolas , Agua
7.
Cell Biosci ; 14(1): 32, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462600

RESUMEN

BACKGROUND: Cancer stem-like capacities are major factors contributing to unfavorable prognosis. However, the associated molecular mechanisms underlying cancer stem-like cells (CSCs) maintain remain unclear. This study aimed to investigate the role of the ubiquitin E3 ligase membrane-associated RING-CH 7 (MARCH7) in bladder cancer cell CSCs. METHODS: Male BALB/c nude mice aged 4-5 weeks were utilized to generate bladder xenograft model. The expression levels of MARCHs were checked in online databases and our collected bladder tumors by quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). Next, we evaluated the stem-like capacities of bladder cancer cells with knockdown or overexpression of MARCH7 by assessing their spheroid-forming ability and spheroid size. Additionally, we conducted proliferation, colony formation, and transwell assays to validate the effects of MARCH7 on bladder cancer CSCs. The detailed molecular mechanism of MARCH7/NOD1 was validated by immunoprecipitation, dual luciferase, and in vitro ubiquitination assays. Co-immunoprecipitation experiments revealed that nucleotide-binding oligomerization domain-containing 1 (NOD1) is a substrate of MARCH7. RESULTS: We found that MARCH7 interacts with NOD1, leading to the ubiquitin-proteasome degradation of NOD1. Furthermore, our data suggest that NOD1 significantly enhances stem-like capacities such as proliferation and invasion abilities. The overexpressed MARCH7 counteracts the effects of NOD1 on bladder cancer CSCs in both in vivo and in vitro models. CONCLUSION: Our findings indicate that MARCH7 functions as a tumor suppressor and inhibits the stem-like capacities of bladder tumor cells by promoting the ubiquitin-proteasome degradation of NOD1. Targeting the MARCH7/NOD1 pathway could be a promising therapeutic strategy for bladder cancer patients.

8.
Bioresour Technol ; 395: 130366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266783

RESUMEN

Single cell oil (SCO) prepared from biodiesel-derived crude glycerol (BCG) and lignocellulosic biomass (LCB) via oleaginous yeasts is an intriguing alternative precursor of biodiesel. Here, a novel strategy combining alkaline BCG pretreated corn stover and dilute acid pretreated water hyacinth for SCO overproduction was developed. The mixed pretreatment liquors (MPLs) were naturally neutralized and adjusted to a proper carbon-to-nitrogen ratio beneficial for SCO overproduction by Cutaneotrichosporon oleaginosum. The toxicity of inhibitors was relieved by dilution detoxification. The enzymatic hydrolysate of solid fractions was suitable for SCO production either separately or simultaneously with MPLs. Fed-batch fermentation of the MPLs resulted in high cell mass, SCO content, and SCO titer of 80.7 g/L, 75.7 %, and 61.1 g/L, respectively. The fatty acid profiles of SCOs implied high-quality biodiesel characteristics. This study offers a novel BCG&LCB-to-SCO route integrating BCG-based pretreatment and BCG/LCB hydrolysates co-utilization, which provides a cost-effective technical route for micro-biodiesel production.


Asunto(s)
Basidiomycota , Eichhornia , Glicerol , Biocombustibles , Zea mays , Lípidos , Levaduras , Fermentación , Ácidos , Biomasa
9.
Brain Pathol ; 34(1): e13212, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721122

RESUMEN

Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB) accounts for about 25% of all subgroups of MB. Tumor microenvironment (TME) may play a key role in the tumor progression and therapeutic resistance. Tumor-associated astrocytes (TAAs) are reshaped to drive tumor progression through multiple paracrine signals. However, the mechanism by which TAAs modulate MB cells remains elusive. Here, we illuminated that TAAs showed a specific and dynamic pattern during SHH-MB development. Most TAAs gathered to the tumor margin during the tumor progression, rather than evenly distributed in the early-stage tumors. We further demonstrated that lipocalin-2 (LCN2) secreted by TAAs could promote the tumor growth and was correlated with the poor prognosis of MB patients. Knocking down LCN2 in TAAs in vitro impeded the proliferation and migration abilities of MB cells. In addition, we identified that TAAs accelerated the tumor growth by secreting LCN2 via STAT3 signaling pathway. Accordingly, blockade of STAT3 signaling by its inhibitor WP1066 and AAV-Lcn2 shRNA, respectively, in TAAs abrogated the effects of LCN2 on tumor progression in vitro and in vivo. In summary, we for the first time clarified that LCN2, secreted by TAAs, could promote MB tumor progression via STAT3 pathway and has potential prognostic value. Our findings unveiled a new sight in reprogramming the TME of SHH-MB and provided a potential therapeutic strategy targeting TAAs.


Asunto(s)
Neoplasias Cerebelosas , Lipocalina 2 , Meduloblastoma , Humanos , Astrocitos/patología , Neoplasias Cerebelosas/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Lipocalina 2/genética , Lipocalina 2/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Microambiente Tumoral
10.
Anim Nutr ; 15: 375-385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058567

RESUMEN

Aquatic animals have benefited from Bacillus subtilis-based probiotics over the past few decades. This study evaluated the effects of B. subtilis DSM 32315 probiotics as a feed additive on growth, immune response and resistance to acute ammonia challenge in Nile tilapia. Specifically, four supplemental levels (0%, 0.1%, 0.2%, and 0.3%) of B. subtilis probiotics were tested under two dietary protein levels (32% and 28%). Five replicate tanks were randomly allotted to each dietary treatment, with each tank containing 30 Nile tilapia. After 8 weeks of feeding, Nile tilapia in each tank were exposed to 43.61 mg/L of total ammonia nitrogen for 48 h. The results revealed that reducing protein levels from 32% to 28% did not affect growth performance or antioxidant capacity. However, the low protein diet tended to induce an inflammatory effect shown by increased expressions of TGF-ß and IFN-γ genes (P < 0.05) in the liver. The impact was alleviated by the probiotic supplementation. Compared with the non-supplemented group, 0.1% probiotic supplementation remarkably increased plasma lysozyme activity, total antioxidant capacity and complement C3 and interleukin-10 mRNA levels (P < 0.05) in the 28% protein diet, while higher supplementation of probiotics (0.3%) was shown to be beneficial for the high protein diet (32%). In both the dietary protein levels, 0.1% supplementation of probiotics promoted the antioxidant capacity of Nile tilapia before exposure to ammonia stress but higher probiotic supplementation (0.3%) proved to be necessary under ammonia stress as evidenced by higher fish survival rate. Results exhibited that supplementation with B. subtilis probiotics had a better effect on the intestinal morphology (villi height and width) regardless of protein levels. In conclusion, dietary supplementation of B. subtilis DSM 32315 probiotics at 0.1% in the low protein diet and up to 0.3% in the high protein diet showed beneficial effects on the growth, immunity, and antioxidant capacity of Nile tilapia. Under ammonia stress conditions, the higher supplementation of B. subtilis DSM 32315 probiotics at 0.3% improves stress tolerance of Nile tilapia despite the two dietary protein levels (32%; 28%).

11.
Viruses ; 15(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140594

RESUMEN

Mudanjiang phlebovirus (MJPV) is a newly discovered phlebovirus, initially detected from Ixodes persulcatus ticks in China in 2022. In this study, by next-generation sequencing (NGS) on a wide variety of ticks and wild small animals in China, we detected MJPV from I. persulcatus and Meriones meridianus. Additionally, we conducted RT-PCR and sequencing on 1815 adult ticks and 805 wild small mammals collected from eight provinces in China between 2017 and 2021. MJPV RNA-positive results were found in 0.22% (4/1815) of tick samples, as well as in 0.12% (1/805) of rodent samples. All positive detections were obtained from Heilongjiang and Inner Mongolia. Sequencing analysis revealed nucleotide similarities ranging from 98.23% to 99.11%, as well as amino acid similarities ranging from 99.12% to100%, between the current MJPV strain and previously reported strains of MJPV. Phylogenetic tree analysis demonstrated that the previously reported MJPV strain along with our two variants clustered together with other tick-borne phenuiviruses, indicating their close relationship within this viral group. This study represents the first detection of MJPV infection in wild rodents, expanding the known host range for this virus in the endemic regions.


Asunto(s)
Ixodes , Phlebovirus , Virus , Animales , Phlebovirus/genética , Filogenia , Animales Salvajes , Roedores , China/epidemiología
12.
Antioxidants (Basel) ; 12(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136162

RESUMEN

The aim of this study was to evaluate the effects of a low-fish-meal diet supplemented with coenzyme Q10 on the growth, antioxidant capacity, immunity, intestinal health and hypoxic resistance of Litopenaeus vannamei. L.vannamei with an initial weight of 0.66 g were fed with the experimental diets for 56 days. Diets D1 (20% FM level) and D2-D7 (15% FM level), supplemented with 0%, 0.002%, 0.004%, 0.006%, 0.008% and 0.01% coenzyme Q10 were formulated. In terms of growth performance, the weight gain and specific growth rate in the D2 diet were significantly lower than those in the D1 diet (p < 0.05). The final body weight, weight gain and specific growth rate in the D2-D7 diets had an upward trend, and the condition factor in the D2-D7 diets was lower than those in the D1 diet (p < 0.05). There were no significant differences in the crude protein and crude lipid levels in the whole body among all diet treatments (p > 0.05). In terms of hepatopancreas antioxidant parameters, the D5 and D6 diets significantly promoted the total antioxidant capacity and total superoxide dismutase activity, and significantly decreased the malondialdehyde content (p < 0.05). The expression levels of cat, mnsod and gpx in shrimp fed with the D5 and D6 diets were significantly higher than those of shrimp fed with the D2 diet (p < 0.05). In addition, the mRNA level of ProPO was increased in the D4 and D5 diets, and LZM expression was increased in the D6 diet compared with the D1 diet (p < 0.05). The villus height of shrimp fed with diets supplemented with coenzyme Q10 was significantly increased (p < 0.05), and the intestinal thickness and submucosal thickness of shrimp fed with the D6 diet were the highest (p < 0.05). After acute hypoxia stress, lethal dose 50 time in the D3-D7 diets was significantly increased compared with the D1 and D2 diets (p < 0.05), and the highest value was found in the D4 diet (p < 0.05). After stress, the expression levels of TLR pathway-related genes (Toll, Myd88, Pelle, TRAF6 and Dorsal) in the D4 and D6 diets were significantly increased compared with the D2 diet. In general, Litopenaeus vannamei fed with the D6 diet achieved the best growth, antioxidant capacity, immunity, and intestinal morphology among all low FM diets and D4-D6 diets improved hypoxic resistance.

13.
Animals (Basel) ; 13(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37893964

RESUMEN

Deciphering the role of climate adaptation in generating genetic divergence and hence speciation is a central question in evolution. Comparisons of genomes of closely related species spanning selective climate gradients are particularly informative in discerning the signatures of selection and thereby providing valuable information concerning the role of climate adaptation in speciation. Here we re-sequenced 99 genomes of the two sister eel-goby species Odontamblyopus lacepedii and O. rebecca, which are endemic to tidal mudflats spanning contrasting latitude gradients, to estimate the influence of divergent climate selection on shaping genome-wide patterns of divergence. The results indicated that genome-wide differentiation between the two species was evident (genome-wide FST = 0.313). Against a background of high baseline genomic divergence, 588 and 1202 elevated divergent loci were detected to be widespread throughout their genomes, as opposed to focused within small islands of genomic regions. These patterns of divergence may arise from divergent climate selection in addition to genetic drift acting through past glacial segregation (1.46 million years ago). We identified several candidate genes that exhibited elevated divergence between the two species, including genes associated with substance metabolism, energy production, and response to environmental cues, all putative candidates closely linked to thermal adaptation expected from the latitude gradient. Interestingly, several candidates related to gamete recognition and time of puberty, and also exhibited elevated divergence, indicating their possible role in pre-zygote isolation and speciation of the two species. Our results would expand our knowledge on the roles of latitude climate adaptation and genetic drift in generating and maintaining biodiversity in marine teleosts.

14.
Zookeys ; 1179: 299-311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745623

RESUMEN

Amphioctopusaegina is an economically important species that has been intensively exploited in the marine areas along the Chinese coast. However, the genetic variation and population genetic structure, which would provide valuable information for their fisheries management, have rarely been investigated. In this study, the genetic variation within and among four A.aegina populations throughout its full distribution range were estimated based on mitochondrial cytochrome b DNA sequences. Our results indicated low (Qinzhou) to high (Dongshan) genetic diversities among the four populations. Analysis of molecular variance (AMOVA), ΦST statistics, phylogenetic tree and haplotype networks revealed two significant (p < 0.01) divergent lineages with a ΦST value of 0.7116 between them, one from a population in Qinzhou and the other from the remaining three populations of Dongshan, Huizhou and Zhanjiang. However, the low genetic distance (0.0032) and only two fixed substitutions between them suggest their recent divergence is possibly due to the last glacial period barriers to gene flow produced by the Leizhou Peninsula. The observed lineage divergence suggests that populations of A.aegina in China are genetically subdivided and may represent evolutionary lineages that should be managed individually.

15.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629073

RESUMEN

Amblyopinae is one of the lineage of bony fish that preserves amphibious traits living in tidal mudflat habitats. In contrast to other active amphibious fish, Amblyopinae species adopt a seemly more passive lifestyle by living in deep burrows of mudflat to circumvent the typical negative effects associated with terrestriality. However, little is known about the genetic origin of these mudflat deep-burrowing adaptations in Amblyopinae. Here we sequenced the first genome of Amblyopinae species, Taenioides sp., to elucidate their mudflat deep-burrowing adaptations. Our results revealed an assembled genome size of 774.06 Mb with 23 pseudochromosomes anchored, which predicted 22,399 protein-coding genes. Phylogenetic analyses indicated that Taenioides sp. diverged from the active amphibious fish of mudskipper approximately 28.3 Ma ago. In addition, 185 and 977 putative gene families were identified to be under expansion, contraction and 172 genes were undergone positive selection in Taenioides sp., respectively. Enrichment categories of top candidate genes under significant expansion and selection were mainly associated with hematopoiesis or angiogenesis, DNA repairs and the immune response, possibly suggesting their involvement in the adaptation to the hypoxia and diverse pathogens typically observed in mudflat burrowing environments. Some carbohydrate/lipid metabolism, and insulin signaling genes were also remarkably alterated, illustrating physiological remolding associated with nutrient-limited subterranean environments. Interestingly, several genes related to visual perception (e.g., crystallins) have undergone apparent gene losses, pointing to their role in the small vestigial eyes development in Taenioides sp. Our work provide valuable resources for understanding the molecular mechanisms underlying mudflat deep-burrowing adaptations in Amblyopinae, as well as in other tidal burrowing teleosts.


Asunto(s)
Aclimatación , Perciformes , Animales , Filogenia , Mapeo Cromosómico , Secuencia de Bases , Anguilas
16.
Int J Biol Macromol ; 247: 125707, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37423453

RESUMEN

Circular Gleditsia sinensis gum, Gleditsia microphylla gum, and tara gum are galactomannans (GMs) with similar mannose/galactose (M/G) molar ratios, which complicates the characterization of physicochemical properties using conventional methods. Herein, the hydrophobic interactions and critical aggregation concentrations (CACs) of the GMs were compared using a fluorescence probe technique, in which the I1/I3 ratio of pyrene indicated polarity changes. With increasing GM concentration, the I1/I3 ratio decreased slightly in dilute solutions below the CAC but decreased sharply in semidilute solutions above the CAC, indicating that the GMs formed hydrophobic domains. However, increases in temperature destroyed the hydrophobic microdomains and increased the CACs. Higher concentrations of salts (SO42-, Cl-, SCN-, and Al3+) promoted hydrophobic microdomain formation, and the CACs in Na2SO4 and NaSCN solutions were lower than those in pure water. Hydrophobic microdomain formation also occurred upon Cu2+ complexation. Although urea addition promoted hydrophobic microdomain formation in dilute solutions, the microdomains were destroyed in semidilute solutions and the CACs increased. The formation or destruction of hydrophobic microdomains depended on the molecular weight, M/G ratio and galactose distribution of GMs. Therefore, the fluorescent probe technique enables the characterization of hydrophobic interactions in GM solutions, which can provide valuable insight into molecular chain conformations.


Asunto(s)
Gleditsia , Gleditsia/química , Colorantes Fluorescentes , Galactosa/química , Fluorescencia , Mananos/química , Interacciones Hidrofóbicas e Hidrofílicas
17.
Front Pharmacol ; 14: 1185004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266150

RESUMEN

Background: Severe acute respiratory syndrome coronavirus (SARS-CoVs) have emerged as a global health threat, which had caused a high rate of mortality. There is an urgent need to find effective drugs against these viruses. Objective: This study aims to predict the activity of unsymmetrical aromatic disulfides by constructing a QSAR model, and to design new compounds according to the structural and physicochemical attributes responsible for higher activity towards SARS-CoVs main protease. Methods: All molecules were constructed in ChemOffice software and molecular descriptors were calculated by CODESSA software. A regression-based linear heuristic method was established by changing descriptors datasets and calculating predicted IC50 values of compounds. Then, some new compounds were designed according to molecular descriptors from the heuristic method model. The compounds with predicted values smaller than a set point were constantly screened out. Finally, the properties analysis and molecular docking were conducted to further understand the structure-activity relationships of these finalized compounds. Results: The heuristic method explored the various descriptors responsible for bioactivity and gained the best linear model with R2 0.87. The success of the model fully passed the testing set validation, proving that the model has both high statistical significance and excellent predictive ability. A total of 5 compounds with ideal predicted IC50 were found from the 96 newly designed derivatives and their properties analyze was carried out. Molecular docking experiments were conducted for the optimal compound 31a, which has the best compound activity with good target protein binding capability. Conclusion: The heuristic method was quite reliable for predicting IC50 values of unsymmetrical aromatic disulfides. The present research provides meaningful guidance for further exploration of the highly active inhibitors for SARS-CoVs.

18.
Front Public Health ; 11: 990181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033079

RESUMEN

Objective: To analyze the inpatient cost of hematopoietic stem cell transplantation (HSCT) in children, so as to support clinical decision-making. Methods: Study population were children who received HSCT in a tertiary children's hospital (Sichuan, China) between 1st January 2020 and 31st December 2021. The median and interquartile range (IQR) of total cost at 100 days post transplantation were calculated. Subgroup analyses were conducted based on age, gender, transplantation types, and post-transplant complications. The cost differences between subgroups were analyzed to determine whether it had an impact on the total costs. Results: A total of 142 pediatric patients were included in the study with a total cost of 250721.78 yuan (197019.16-315740.52, 1 yuan equals to around 0.15 US dollars). Drug costs accounted for 51.85% of the total cost, followed by medical service costs (12.57%) and treatment expenses (12.24%). In terms of transplantation types, the cost of autologous transplantation was lower than that of allogeneic transplantation (115722.98 yuan vs. 256043.99 yuan, p < 0.05), and the cost of human leukocyte antigen (HLA) complete matched was lower compared with that of partial matched (213760.88 yuan vs. 294044.84 yuan, p < 0.05). As for post-transplant complications, cases with <3 types of complications cost less than those with ≥3 types (212893.25 yuan vs. 286064.60 yuan, p < 0.05), and those with severity ≤ grade 2 cost less than those > grade 2 (235569.37 yuan vs. 280061.58 yuan, p < 0.05). Age and gender of patients did not lead to statistical differences in the total cost, while the transplantation types and post-transplant complications influenced the total cost. Conclusion: The total cost at 100 days post transplantation associated with HSCT treatment were substantial for pediatric patients. The HLA compatibility between donors and recipients, and post-transplant complications were important factors affecting the total cost.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Humanos , Niño , Costos y Análisis de Costo , Trasplante Homólogo/efectos adversos , Trasplante Autólogo/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , China/epidemiología
19.
Br J Nutr ; 130(10): 1689-1703, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37039459

RESUMEN

Zn is an important trace element involved in various biochemical processes in aquatic species. An 8-week rearing trial was thus conducted to investigate the effects of Zn on juvenile largemouth bass (Micropterus salmoides) by feeding seven diets, respectively, supplemented with no Zn (Con), 60 and 120 mg/kg inorganic Zn (Sul60 and Sul120), and 30, 60, 90 and 120 mg/kg organic Zn (Bio30, Bio60, Bio90 and Bio120). Sul120 and Bio120 groups showed significantly higher weight gain and specific growth rate than Con group, with Bio60 group obtaining the lowest viscerosomatic index and hepatosomatic index. 60 or 90 mg/kg organic Zn significantly facilitated whole body Zn retention. Up-regulation of hepatic superoxide dismutase, glutathione peroxidase and catalase activities and decline of malondialdehyde contents indicated augmented antioxidant capacities by organic Zn. Zn treatment also lowered plasma aminotransferase levels while promoting acid phosphatase activity and hepatic transcription levels of alp1, acp1 and lyz-c than deprivation of Zn. The alterations in whole body and liver crude lipid and plasma TAG contents illustrated the regulatory effect of Zn on lipid metabolism, which could be possibly attributed to the changes in hepatic expressions of acc1, pparγ, atgl and cpt1. These findings demonstrated the capabilities of Zn in potentiating growth and morphological performance, antioxidant capacity, immunity as well as regulating lipid metabolism in M. salmoides. Organic Zn could perform comparable effects at same or lower supplementation levels than inorganic Zn, suggesting its higher efficiency. 60 mg/kg supplementation of organic Zn could effectively cover the requirements of M. salmoides.


Asunto(s)
Antioxidantes , Lubina , Animales , Antioxidantes/metabolismo , Metabolismo de los Lípidos , Zinc/farmacología , Zinc/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Inmunidad
20.
Materials (Basel) ; 16(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903227

RESUMEN

In this paper, micron-sized TiB2/AlZnMgCu(Sc,Zr) composites were fabricated by selective laser melting (SLM) using directly mixed powder. Nearly fully dense (over 99.5%) and crack-free SLM-fabricated TiB2/AlZnMgCu(Sc,Zr) composite samples were obtained and its microstructure and mechanical properties were investigated. It is found that the laser absorption rate of powder is improved by introducing micron-sizedTiB2 particles, then the energy density required for SLM forming can be reduced, and the densification can finally be improved. Some crystalline TiB2 formed a coherent relationship with the matrix, while some broken TiB2 particles did not, however, MgZn2 and Al3(Sc,Zr) can perform as intermediate phases to connect these non-coherent surfaces to aluminum matrix. All these factors lead to an increase in strength of the composite. The SLM-fabricated micron-sized TiB2/AlZnMgCu(Sc,Zr) composite finally shows a very high ultimate tensile strength of ~646 MPa and yield strength of ~623 MPa, which are higher than many other aluminum composites fabricated by SLM, while maintaining a relatively good ductility of ~4.5%. The fracture of TiB2/AlZnMgCu(Sc,Zr) composite is occurred along the TiB2 particles and the bottom of the molten pool. This is due to the concentration of stress from the sharp tip of TiB2 particles and the coarse precipitated phase at the bottom of the molten pool. The results show that TiB2 plays a positive role in AlZnMgCu alloys fabricated by SLM, but finer TiB2 particles should be studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...