Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 22(7): 2411-2420, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37327455

RESUMEN

Periodontitis is the leading cause of tooth loss in adults worldwide. The human proteome and metaproteome characterization of periodontitis is not clearly understood. Gingival crevicular fluid samples were collected from eight periodontitis and eight healthy subjects. Both the human and microbial proteins were characterized by liquid chromatography coupled with high-resolution mass spectrometry. A total of 570 human proteins were found differentially expressed, which were primarily associated with inflammatory response, cell death, cellular junction, and fatty acid metabolism. For the metaproteome, 51 genera were identified, and 10 genera were found highly expressed in periodontitis, while 11 genera were downregulated. The analysis showed that microbial proteins related to butyrate metabolism were upregulated in periodontitis cases. In particular, correlation analysis showed that the expression of host proteins related to inflammatory response, cell death, cellular junction, and lipid metabolism correlates with the alteration of metaproteins, which reflect the changes of molecular function during the occurrence of periodontitis. This study showed that the gingival crevicular fluid human proteome and metaproteome could reflect the characteristics of periodontitis. This might benefit the understanding of the periodontitis mechanism.


Asunto(s)
Microbiota , Periodontitis , Adulto , Humanos , Proteoma/genética , Proteoma/análisis , Líquido del Surco Gingival/química , Espectrometría de Masas
2.
Nano Lett ; 23(11): 5148-5154, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253157

RESUMEN

Three-dimensional (3D) characterization of organisms is important for the study of cellular phenotypes, structural organization, and mechanotransduction. Existing optical techniques for 3D imaging rely on focus stacking or complex multiangle projection. Focus stacking has deleterious axial resolution due to the one-angle optical projection. Herein, we achieve high-resolution 3D imaging and classification of organisms based on standard optical microscopy coupled to optothermal rotation. Through a seamless fusion of optical trapping and rotation of organisms on a single platform, our technique is applicable to any organism suspended in clinical samples, enabling contact-free and biocompatible 3D imaging. Moreover, when applying deep learning to distinguish different types of biological cells with high similarity, we demonstrate that our platform improves the classification accuracy (96% vs 85%) while using one-tenth the number of training samples compared with conventional deep-learning-based classification.


Asunto(s)
Imagenología Tridimensional , Microscopía , Imagenología Tridimensional/métodos , Mecanotransducción Celular , Pinzas Ópticas
3.
Nat Rev Chem ; 7(5): 355-373, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37117811

RESUMEN

The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.


Asunto(s)
Estereoisomerismo , Humanos , Biomarcadores
4.
eLight ; 2(1): 13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965781

RESUMEN

The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases. Supplementary Information: The online version contains supplementary material available at 10.1186/s43593-022-00020-4.

5.
ACS Nano ; 16(7): 10878-10889, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816157

RESUMEN

Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.


Asunto(s)
Pinzas Ópticas , Óptica y Fotónica , Rayos Láser , Nanotecnología/métodos , Membrana Celular
6.
Chin Med Sci J ; 37(2): 164-166, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35796341

RESUMEN

Mandibular buccal bifurcation cyst is a rare inflammatory odontogenic cyst. We reported two cases who complained of painful swelling of extraoral soft tissue. Intraoral examination revealed the partially erupted mandibular first molar. Cone beam computed tomography showed a well-defined cystic lesion surrounding the first molar. Histopathologic images showed the cyst wall was infiltrated by a large number of plasma cells, neutrophils and eosinophils, and lined with a thin layer of non-keratinized stratified squamous epithelium. Finally, the two patients were diagnosed as mandibular buccal bifurcation cyst and treated with cyst enucleation and curettage.


Asunto(s)
Enfermedades Mandibulares , Quistes Odontogénicos , Quiste Periodontal , Humanos , Recuento de Leucocitos , Enfermedades Mandibulares/diagnóstico por imagen , Enfermedades Mandibulares/patología , Enfermedades Mandibulares/cirugía , Diente Molar/patología , Quistes Odontogénicos/diagnóstico por imagen , Quistes Odontogénicos/cirugía , Quiste Periodontal/patología
7.
ACS Nano ; 16(6): 8820-8826, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35594375

RESUMEN

Motors that can convert different forms of energy into mechanical work are of profound importance to the development of human societies. The evolution of micromotors has stimulated many advances in drug delivery and microrobotics for futuristic applications in biomedical engineering and nanotechnology. However, further miniaturization of motors toward the nanoscale is still challenging because of the strong Brownian motion of nanomotors in liquid environments. Here, we develop light-driven opto-thermocapillary nanomotors (OTNM) operated on solid substrates where the interference of Brownian motion is effectively suppressed. Specifically, by optically controlling particle-substrate interactions and thermocapillary actuation, we demonstrate the robust orbital rotation of 80 nm gold nanoparticles around a laser beam on a solid substrate. With on-chip operation capability in an ambient environment, our OTNM can serve as light-driven engines to power functional devices at the nanoscale.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Nanotecnología , Movimiento (Física) , Luz
8.
Surg Radiol Anat ; 44(4): 551-558, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35303119

RESUMEN

OBJECTIVES: The purpose of this study was to investigate short- and long-term postoperative changes of both morphology and transverse stability in mandibular ramus after intraoral vertical ramus osteotomy (IVRO) in patients with jaw deformity using three-dimensional (3D) orthognathic surgery planning treatment software for measurement of distances and angles. STUDY DESIGN: This retrospective study included consecutive patients with skeletal Class III malocclusion who had undergone intraoral vertical ramus osteotomy and computed tomography images before (T0), immediately after (T1), and 1 year after (T2) surgery. Reference points, reference lines and evaluation items were designated on the reconstructed 3D surface models to measure distances, angles and volume. The average values at T0, T1, T2 and time-dependent changes in variables were obtained. RESULTS: After surgery, the condylar length, ramal height, mandibular body length and mandibular ramus volume were significantly decreased (P < 0.01), while clinically insignificant change was observed from T1 to T2. The angular length was increased immediately after surgery (P < 0.05), but it was decreased 1 year after surgery (P < 0.05). Lateral ramal inclination showed significant increase after surgery (P < 0.05) and maintained at T2. CONCLUSION: Changes in the morphology of the mandibular ramus caused by IVRO do not obviously bring negative effect on facial appearance. Furthermore, despite position and angle of mandibular ramus changed after IVRO, good transverse stability was observed postoperatively. Therefore, IVRO technique can be safely used without compromising esthetic results.


Asunto(s)
Osteotomía Sagital de Rama Mandibular , Prognatismo , Cefalometría/métodos , Humanos , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Osteotomía Sagital de Rama Mandibular/métodos , Prognatismo/cirugía , Estudios Retrospectivos
9.
Proteomics ; 21(20): e2000321, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464030

RESUMEN

Gingival crevicular fluid (GCF) is an integral part of oral fluid that plays a special role in maintaining the structure of junctional epithelium and defending against bacterial infection. In this study, we comprehensively analysed the composition of the human GCF proteome and metaproteome simultaneously to obtain multidimensional information about GCF. A total of 3680 human proteins (2540 with at least two unique peptides) were identified in the normal GCF sample, and their functions were mainly associated with immune function and inflammation. Among these proteins, 1874 proteins could be quantified by the iBAQ algorithm, and their abundances spanned a dynamic range of six orders of magnitude. For the GCF metaproteome, a total of 3082 proteins and 69 genera were found. In addition, 16 genera were not identified by GCF metagenomic analysis. Compared to the saliva metaproteome, 32 genera were found to be in common. The protein quantitative analysis showed that the abundance of GCF metaproteome contributed to approximately 4.17% of the total GCF proteome. The top three most abundant genera were Fusobacterium, Corynebacterium, and Leptotrichia. The above data will be useful for future research on GCF-related diseases.


Asunto(s)
Líquido del Surco Gingival , Proteoma , Humanos , Péptidos , Saliva
10.
Sci Adv ; 7(26)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34172454

RESUMEN

Optical tweezers offer revolutionary opportunities for both fundamental and applied research in materials science, biology, and medical engineering. However, the requirement of a strongly focused and high-intensity laser beam results in potential photon-induced and thermal damages to target objects, including nanoparticles, cells, and biomolecules. Here, we report a new type of light-based tweezers, termed opto-refrigerative tweezers, which exploit solid-state optical refrigeration and thermophoresis to trap particles and molecules at the laser-generated cold region. While laser refrigeration can avoid photothermal heating, the use of a weakly focused laser beam can further reduce the photodamages to the target object. This novel and noninvasive optical tweezing technique will bring new possibilities in the optical control of nanomaterials and biomolecules for essential applications in nanotechnology, photonics, and life science.

11.
ACS Nano ; 15(4): 6448-6456, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33760602

RESUMEN

Homochirality is necessary for normal biochemical processes in humans. Abnormal amounts of chiral molecules in biofluids have been found in patients with diabetes. However, the detailed analysis of diabetes-related abnormal chirality in biofluids and its potential use for clinical applications have been hindered by the difficulty in detecting and monitoring the chiral changes in biofluids, due to their low molar mass and trace concentrations. Herein, we demonstrate the label-free detection of chiral molecules using only 10 µL with 107-fold enhancement in sensitivity compared with traditional plasmonic chiral metamaterials. The ultrahigh sensitivity and low sample consumption were enabled by microbubble-induced rapid accumulation of biomolecules on plasmonic chiral sensors. We have applied our technique on mouse and human urine samples, uncovering the previously undetectable diabetes-induced abnormal dextrorotatory shift in chirality of urine metabolites. Furthermore, the accumulation-assisted plasmonic chiral sensing achieved a diagnostic accuracy of 84% on clinical urine samples from human patients. With the ultrahigh sensitivity, ultralow sample consumption, and fast response, our technique will benefit diabetes research and could be developed as point-of-care devices for first-line noninvasive screening and prognosis of prediabetes or diabetes and its complications.


Asunto(s)
Diabetes Mellitus , Animales , Diabetes Mellitus/diagnóstico , Humanos , Ratones , Estereoisomerismo
12.
Nano Lett ; 21(2): 973-979, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33372805

RESUMEN

Subwavelength nanostructures with tunable compositions and geometries show favorable optical functionalities for the implementation of nanophotonic systems. Precise and versatile control of structural configurations on solid substrates is essential for their applications in on-chip devices. Here, we report all-solid-phase reconfigurable chiral nanostructures with silicon nanoparticles and nanowires as the building blocks in which the configuration and chiroptical response can be tailored on-demand by dynamic manipulation of the silicon nanoparticle. We reveal that the optical chirality originates from the handedness-dependent coupling between optical resonances of the silicon nanoparticle and the silicon nanowire via numerical simulations and coupled-mode theory analysis. Furthermore, the coexisting electric and magnetic resonances support strong enhancement of optical near-field chirality, which enables label-free enantiodiscrimination of biomolecules in single nanostructures. Our results not only provide insight into the design of functional high-index materials but also bring new strategies to develop adaptive devices for photonic and electronic applications.


Asunto(s)
Nanopartículas , Nanoestructuras , Óptica y Fotónica , Fotones , Silicio
13.
Light Sci Appl ; 9: 141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864116

RESUMEN

Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.

14.
Light Sci Appl ; 9: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194948

RESUMEN

Optomechanics arises from the photon momentum and its exchange with low-dimensional objects. It is well known that optical radiation exerts pressure on objects, pushing them along the light path. However, optical pulling of an object against the light path is still a counter-intuitive phenomenon. Herein, we present a general concept of optical pulling-opto-thermoelectric pulling (OTEP)-where the optical heating of a light-absorbing particle using a simple plane wave can pull the particle itself against the light path. This irradiation orientation-directed pulling force imparts self-restoring behaviour to the particles, and three-dimensional (3D) trapping of single particles is achieved at an extremely low optical intensity of 10-2 mW µm-2. Moreover, the OTEP force can overcome the short trapping range of conventional optical tweezers and optically drive the particle flow up to a macroscopic distance. The concept of self-induced opto-thermomechanical coupling is paving the way towards freeform optofluidic technology and lab-on-a-chip devices.

15.
Nat Commun ; 10(1): 5672, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831746

RESUMEN

Constructing colloidal particles into functional nanostructures, materials, and devices is a promising yet challenging direction. Many optical techniques have been developed to trap, manipulate, assemble, and print colloidal particles from aqueous solutions into desired configurations on solid substrates. However, these techniques operated in liquid environments generally suffer from pattern collapses, Brownian motion, and challenges that come with reconfigurable assembly. Here, we develop an all-optical technique, termed optothermally-gated photon nudging (OPN), for the versatile manipulation and dynamic patterning of a variety of colloidal particles on a solid substrate at nanoscale accuracy. OPN takes advantage of a thin surfactant layer to optothermally modulate the particle-substrate interaction, which enables the manipulation of colloidal particles on solid substrates with optical scattering force. Along with in situ optical spectroscopy, our non-invasive and contactless nanomanipulation technique will find various applications in nanofabrication, nanophotonics, nanoelectronics, and colloidal sciences.


Asunto(s)
Coloides/química , Nanoestructuras/química , Óptica y Fotónica/métodos , Fotones , Fenómenos Biofísicos , Movimiento (Física) , Tamaño de la Partícula , Tensoactivos/química , Temperatura
16.
Langmuir ; 34(44): 13252-13262, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350700

RESUMEN

Lipid vesicles are important biological assemblies, which are critical to biological transport processes, and vesicles prepared in the lab are a workhorse for studies of drug delivery, protein unfolding, biomolecular interactions, compartmentalized chemistry, and stimuli-responsive sensing. The current method of using optical tweezers for holding lipid vesicles in place for single-vesicle studies suffers from limitations such as high optical power, rigorous optics, and small difference in the refractive indices of vesicles and water. Herein, we report the use of plasmonic heating to trap vesicles in a temperature gradient, allowing long-range attraction, parallel trapping, and dynamic manipulation. The capabilities and limitations with respect to thermal effects on vesicle structure and optical spectroscopy are discussed. This simple approach allows vesicle manipulation using down to 3 orders of magnitude lower optical power and at least an order of magnitude higher trapping stiffness per unit power than traditional optical tweezers while using a simple optical setup. In addition to the benefit provided by the relaxation of these technical constraints, this technique can complement optical tweezers to allow detailed studies on thermophoresis of optically trapped vesicles and effects of locally generated thermal gradients on the physical properties of lipid vesicles. Finally, the technique itself and the large-scale collection of vesicles have huge potential for future studies of vesicles relevant to detection of exosomes, lipid-raft formation, and other areas relevant to the life sciences.


Asunto(s)
Pinzas Ópticas , Liposomas Unilamelares/química , Calefacción , Tamaño de la Partícula , Transición de Fase , Fosfatidilgliceroles/química , Temperatura
17.
ACS Nano ; 12(10): 10383-10392, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30226980

RESUMEN

Optical manipulation of colloidal nanoparticles and molecules is significant in numerous fields. Opto-thermoelectric nanotweezers exploiting multiple coupling among light, heat, and electric fields enables the low-power optical trapping of nanoparticles on a plasmonic substrate. However, the management of light-to-heat conversion for the versatile and precise manipulation of nanoparticles is still elusive. Herein, we explore the opto-thermoelectric trapping at plasmonic antennas that serve as optothermal nanoradiators to achieve the low-power (∼0.08 mW/µm2) and deterministic manipulation of nanoparticles. Specifically, precise optical manipulation of nanoparticles is achieved via optical control of the subwavelength thermal hot spots. We employ a femtosecond laser beam to further improve the heat localization and the precise trapping of single ∼30 nm semiconductor quantum dots at the antennas where the plasmon-exciton coupling can be tuned. With its low-power, precise, and versatile particle control, the opto-thermoelectric manipulation can have applications in photonics, life sciences, and colloidal sciences.

18.
Nanoscale ; 10(38): 18096-18112, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30004551

RESUMEN

Chiral metamaterials have attracted strong interest due to their versatile capabilities in spin-dependent light manipulation. Benefiting from advancements in nanofabrication and mechanistic understanding of chiroptical effects, chiral metamaterials have shown potential in a variety of applications including circular polarizers, chiral sensors, and chiroptical detectors. Recently, chiral metamaterials made by moiré stacking, superimposing two or more periodic patterns with different lattice constants or relative spatial displacement, have shown promise for chiroptical applications. The moiré chiral metamaterials (MCMs) take advantage of lattice-dependent chirality, giving cost-effective fabrication, flexible tunability, and reconfigurability superior to conventional chiral metamaterials. This feature article focuses on recent progress of MCMs. We discuss optical mechanisms, structural design, fabrication, and applications of the MCMs. We conclude with our perspectives on the future opportunities for the MCMs.

19.
Oncol Lett ; 15(6): 9498-9506, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29805672

RESUMEN

Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ2=3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.

20.
Proteomics Clin Appl ; 12(6): e1800008, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29781159

RESUMEN

PURPOSE: Body fluid is considered a rich source of disease biomarkers. Proteins in many body fluids have potential clinical applications for disease diagnostic and prognostic predictions. EXPERIMENTAL DESIGN: To determine differences in the protein components and functional features of body fluids, a proteomic comparison of five body fluids (plasma, urine, cerebrospinal fluid, saliva, and amniotic fluid) was conducted by high-resolution mass spectrometry. RESULTS: A total of 4717 nonredundant proteins were identified, and the concentrations of 3433 proteins were estimated by an intensity-based algorithm quantitation method. Among them, 564 proteins were shared among the five body fluids, with common functions in the coagulation/prothrombin system and inflammatory response. A total of 36.7% of the proteins were detected in only one body fluid and were closely related to their adjacent tissues by function. The functional analysis of the remaining 2986 proteins showed that similar functions might be shared among different body fluids, which highlighted intimate connection in the body. CONCLUSIONS AND CLINICAL RELEVANCE: The quantitative comparative functional analysis indicated that body fluids might reflect the diverse functions of the whole body rather than the characteristics of their adjacent tissues. The above data might indicate the potential application of body fluids for biomarker discovery.


Asunto(s)
Proteínas Sanguíneas/química , Líquidos Corporales/química , Proteoma/química , Saliva/química , Líquido Amniótico/química , Biomarcadores/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...