Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 21(16): 9529-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24633845

RESUMEN

The increasing usage and the persistence of polyester polyurethane (PU) generate significant sources of environmental pollution. The effective and environmental friendly bioremediation techniques for this refractory waste are in high demand. In this study, three novel PU degrading bacteria were isolated from farm soils and activated sludge. Based upon 16S ribosomal RNA gene sequence blast, their identities were determined. Particularly robust activity was observed in Pseudomonas putida; it spent 4 days to degrade 92% of Impranil DLN(TM) for supporting its growth. The optimum temperature and pH for DLN removal by P. putida were 25 °C and 8.4, respectively. The degradation and transformation of DLN investigated by Fourier transformed infrared spectroscopy show the decrease in ester functional group and the emergence of amide group. The polyurethanolytic activities were both presented in the extracellular fraction and in the cytosol. Esterase activity was detected in the cell lysate. A 45-kDa protein bearing polyurethanolytic activity was also detected in the extracellular medium. This study presented high PU degrading activity of P. putida and demonstrated its responsible enzymes during the PU degradation process, which could be applied in the bioremediation and management of plastic wastes.


Asunto(s)
Biodegradación Ambiental , Poliuretanos/metabolismo , Pseudomonas putida/metabolismo , Poliésteres , Poliuretanos/química , Aguas del Alcantarillado , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA