Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phytomedicine ; 129: 155609, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38677273

RESUMEN

BACKGROUND: Angiogenesis is an effective method for promoting neurological function recovery after cerebral ischemia (CI). Buyang Huanwu decoction (BHD) is a traditional Chinese medicinal recipe that is frequently employed for CI treatment. Previous investigations have validated that it promotes angiogenesis following CI. Nevertheless, the precise mechanism by which it does this has yet to be completely understood. OBJECTIVE: This study aims to examine the underlying mechanism through which BHD facilitates angiogenesis following CI by regulating the exosomal MALAT1/YAP1/HIF-1α signaling axis, specifically via the involvement of caveolin-1 (Cav1), an endocytosis-associated protein. METHODS: A CI model was created using middle cerebral artery occlusion (MCAO). Following the administration of multiple doses of BHD, various parameters, including the neurobehavioral score, pathological damage, and angiogenesis, were assessed in each group of mice to identify the optimal dosage of BHD for treating CI. The molecular processes underlying the angiogenic implications of BHD following CI were investigated exhaustively by employing single-cell sequencing. Finally, the involvement of Cav1 was confirmed in Cav1 knockout mice and Cav1-silenced stably transfected strains to validate the mechanism by which BHD increases angiogenesis following CI. RESULTS: BHD could promote angiogenesis after CI. Single-cell sequencing results suggested that its potential mechanism of action might be connected with Cav1 and the exosomal MALAT1/YAP1/HIF-1α signaling axis. BHD could promote angiogenesis after CI by regulating the exosomal MALAT1/YAP1/HIF-1α axis through Cav1, as validated in vivo and in vitro experiments. Accordingly, Cav1 may be a key target of BHD in promoting angiogenesis after CI. CONCLUSION: This investigation represents the initial attempt to comprehensively ascertain the underlying mechanism of action of BHD in treating CI using single-cell sequencing, gene-knockout mice, and stable transfected cell lines, potentially associated with the modulation of the exosomal MALAT1/YAP1/HIF-1α axis by Cav1. Our findings offer novel empirical evidence for unraveling the regulatory pathways through which Cav1 participates in angiogenesis following CI and shed light on the potential mechanisms of BHD.

2.
J Cell Physiol ; 239(4): e31178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214211

RESUMEN

Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Histona Demetilasas , Células Madre Neoplásicas , Humanos , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Células Madre Neoplásicas/patología , Periostina , Microambiente Tumoral , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo
3.
J Spec Pediatr Nurs ; 29(1): e12417, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987242

RESUMEN

AIM: Peripherally inserted central catheter (PICC) is an important treatment for the drug and nutrition administration in neonates. We aimed to evaluate the effects and safety of PICC placement through upper versus lower limb vein in neonates, to provide insights into the clinical PICC nursing care. DESIGN: A meta-analysis. METHODS: We searched the Cochrane Library, Web of Science, PubMed, Science Direct, China national knowledge infrastructure, Wanfang Data Knowledge Service Platform, China Weipu Database, China Biomedical Literature Database for published randomized controlled trials (RCTs) on the placement of PICC via upper limb and lower limb venipuncture. Two reviewers independently evaluated and cross-checked the quality of the included studies in accordance with the quality standards of the Cochrane Manual. We used RevMan 5.3 software for statistical processing. RESULTS: A total of 12 RCTs were included in this meta-analysis. Meta-analysis indicated that compared with upper limb veins, PICC insertion through lower limb veins is beneficial to increase the one-time puncture success rate (relative risk [RR]  =  0.73, 95% confidence interval [CI]: 0.68-0.79) and the indwelling time (mean difference [MD] =  -3.60, 95% CI: -5.35 to -1.86), reduce the operation time (MD =  10.37, 95% CI: 7.48-13.26), estimated bleeding volume (MD =  0.55, 95% CI: 0.34-0.75), incidence of catheter ectopia (RR  =  2.46, 95% CI: 1.81-3.35), PICC-associated infection (RR  =  2.82, 95% CI: 1.65-4.83), exosmosis (RR  =  2.45, 95% CI: 1.49-4.04, p < .001) and phlebitis (RR  =  1.40, 95% CI: 1.03-1.90). No significant difference in the Incidence of catheter obstruction between the upper and lower limb veins (RR  =  1.20, 95% CI: 0.73-1.97, p = .48) was found. PUBLIC CONTRIBUTION: There are certain advantages in neonatal PICC puncture through the lower limb vein. The lower limb vein may be the preferred choice for neonatal PICC puncture.


Asunto(s)
Cateterismo Venoso Central , Cateterismo Periférico , Recién Nacido , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Extremidad Inferior , Cateterismo Periférico/efectos adversos , Catéteres
4.
J Ethnopharmacol ; 319(Pt 3): 117218, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37806535

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Promoting the recovery of cerebral blood circulation after cerebral infarction (CI) is an important intervention. Buyang Huanwu decoction (BHD) is a classic prescription for treating CI that promotes angiogenesis. Cytoplasmic glycolysis ischaemic-region cells after CI may be highly activated to maintain metabolic activity under hypoxia. From the perspective of long-term maintenance of glycolytic metabolism in the ischaemic area after CI, it may be beneficial to promote angiogenesis and maintain glial cell activation and neuronal survival. In this context, the regulatory relationship of lncRNAs and miRNAs with mRNAs is worthy of attention. Mining the competitive binding relationships among RNAs will aid in the screening of key gene targets post-CI. In this study, network pharmacology and bioinformatics were used to construct a ceRNA network, screen key targets, and explore the effect of glycolysis on angiogenesis during BHD-mediated CI regulation. AIM OF THE STUDY: This study aimed to explore the effect of BHD on angiogenesis after glycolysis regulation in CI. MATERIALS AND METHODS: According to the 21 active BHD ingredients we identified by our research team, we conducted network pharmacology. BHD targets that can regulate glycolysis and angiogenesis after CI were screened from the GeneCards, CTD and OMIM databases. We retrieved CI-related datasets from the GEO database and screened for differentially expressed lncRNAs and miRNAs. LncRNA‒miRNA-mRNA/TF targeting relationships were screened and organized with the miRcode, miRDB, TargetScan, miRWalk, and TransmiR v2.0 databases. Cytoscape was used to construct an lncRNA‒miRNA-mRNA/TF ceRNA network. Through BioGPS, key mRNAs/TFs in the network were screened for enrichment analysis. Animal experiments were then conducted to validate some key mRNAs/TFs and enriched signalling pathways. RESULTS: PFKFB3 and other genes may help regulate glycolysis and angiogenesis through AMPK and other signalling pathways. The anti-CI effect of BHD may involve maintaining activation of genes such as AMPK and PFKFB3 in the ischaemic cortex, maintaining moderate glycolysis levels in brain tissue, and promoting angiogenesis. CONCLUSION: BHD can regulate glycolysis and promote angiogenesis after CI through multiple pathways and targets, in which AMPK signalling pathway activation may be important.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Proteínas Quinasas Activadas por AMP , Farmacología en Red , Infarto Cerebral , Biología Computacional , ARN Mensajero , MicroARNs/genética
5.
Nat Genet ; 55(11): 1876-1891, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857935

RESUMEN

Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Trastorno Obsesivo Compulsivo , Esquizofrenia , Humanos , Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Esquizofrenia/genética , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/psicología , Trastorno Depresivo Mayor/genética , Trastorno por Déficit de Atención con Hiperactividad/genética
6.
Nat Protoc ; 18(10): 2954-2974, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37596357

RESUMEN

The production of induced neuronal (iN) cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells by the forced expression of proneural transcription factors is rapid, efficient and reproducible. The ability to generate large numbers of human neurons in such a robust manner enables large-scale studies of human neural differentiation and neuropsychiatric diseases. Surprisingly, similar transcription factor-based approaches for converting mouse ESCs into iN cells have been challenging, primarily because of low cell survival. Here, we provide a detailed approach for the efficient and reproducible generation of functional iN cells from mouse ESC cultures by the genetically induced expression of neurogenin-2. The resulting iN cells display mature pre- and postsynaptic specializations and form synaptic networks. Our method provides the basis for studying neuronal development and enables the direct comparison of cellular phenotypes in mouse and human neurons generated in an equivalent way. The procedure requires 14 d and can be carried out by users with expertise in stem cell culture.

7.
Int J Stem Cells ; 16(3): 315-325, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37385633

RESUMEN

Background and Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results: Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions: Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.

8.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37373471

RESUMEN

Neural stem cells (NSCs) persist in the subgranular zone (SGZ) throughout the lifespan and hold immense potential for the repair and regeneration of the central nervous system, including hippocampal-related diseases. Several studies have demonstrated that cellular communication network protein 3 (CCN3) regulates multiple types of stem cells. However, the role of CCN3 in NSCs remains unknown. In this study, we identified CCN3 expression in mouse hippocampal NSCs and observed that supplementing CCN3 improved cell viability in a concentration-dependent manner. Additionally, in vivo results showed that the injection of CCN3 in the dentate gyrus (DG) increased Ki-67- and SOX2-positive cells while decreasing neuron-specific class III beta-tubulin (Tuj1) and doublecortin (DCX)-positive cells. Consistently with the in vivo results, supplementing CCN3 in the medium increased the number of BrdU and Ki-67 cells and the proliferation index but decreased the number of Tuj1 and DCX cells. Conversely, both the in vivo and in vitro knockdown of the Ccn3 gene in NSCs had opposite effects. Further investigations revealed that CCN3 promoted cleaved Notch1 (NICD) expression, leading to the suppression of PTEN expression and eventual promotion of AKT activation. In contrast, Ccn3 knockdown inhibited the activation of the Notch/PTEN/AKT pathway. Finally, the effects of changes in CCN3 protein expression on NSC proliferation and differentiation were eliminated by FLI-06 (a Notch inhibitor) and VO-OH (a PTEN inhibitor). Our findings imply that while promoting proliferation, CCN3 inhibits the neuronal differentiation of mouse hippocampal NSCs and that the Notch/PTEN/AKT pathway may be a potential intracellular target of CCN3. Our findings may help develop strategies to enhance the intrinsic potential for brain regeneration after injuries, particularly stem cell treatment for hippocampal-related diseases.


Asunto(s)
Proteína Hiperexpresada del Nefroblastoma , Células-Madre Neurales , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Diferenciación Celular , Proliferación Celular , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
Front Pharmacol ; 14: 1137609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234709

RESUMEN

Introduction: Mitochondrial quality control (MQC) is an important mechanism of neural repair after cerebral ischemia (CI). Recent studies have shown that caveolin-1 (Cav-1) is an important signaling molecule in the process of CI injury, but its mechanism of regulating MQC after CI is still unclear. Buyang Huanwu Decoction (BHD) is a classic traditional Chinese medicine formula that is often used to treat CI. Unfortunately, its mechanism of action is still obscure. Methods: In this study, we tested the hypothesis that BHD can regulate MQC through Cav-1 and exert an anti-cerebral ischemia injury effect. We used Cav-1 knockout mice and their homologous wild-type mice, replicated middle cerebral artery occlusion (MCAO) model and BHD intervention. Neurobehavioral scores and pathological detection were used to evaluate neurological function and neuron damage, transmission electron microscopy and enzymology detection of mitochondrial damage. Finally, western blot and RT-qPCR expression of MQC-related molecules were tested. Results: After CI, mice showed neurologic impairment, neuronal damage, and significant destruction of mitochondrial morphology and function, and MQC was imbalanced. Cav-1 deletion aggravated the damage to neurological function, neurons, mitochondrial morphology and mitochondrial function after CI, aggravated the imbalance of mitochondrial dynamics, and inhibited mitophagy and biosynthesis. BHD can maintain MQC homeostasis after CI through Cav-1 and improve CI injury. Discussion: Cav-1 can affect CI injury by regulating MQC, and this mechanism may be another target of BHD for anti-cerebral ischemia injury.

10.
Food Funct ; 14(8): 3686-3700, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36971300

RESUMEN

The possible mechanism by which the active components of Anhua fuzhuan tea act on FAM in NAFLD lesions was investigated. 83 components of Anhua fuzhuan tea were analysed by UPLC-Q-TOF/MS. Luteolin-7-rutinoside and other compounds were first discovered in fuzhuan tea. According to the TCMSP database and the Molinspiration website tool to predict and review the literature reports, 78 compounds were identified in fuzhuan tea with possible biological activities. The PharmMapper, Swiss target prediction, and SuperPred databases were used to predict the action targets of biologically active compounds. The GeneCards, CTD, and OMIM databases were mined for NAFLD and FAM genes. Then, a fuzhuan Tea-NAFLD-FAM Venn diagram was constructed. Using the STRING database and CytoHubba program of Cytoscape software, protein interaction analysis was performed, and 16 key genes, including PPARG, were screened. GO function and KEGG enrichment analyses of the screened key genes showed that Anhua fuzhuan tea may regulate FAM in the process of NAFLD through the AMPK signalling pathway, nonalcoholic fatty liver disease pathway, etc. After constructing an active ingredient-key target-pathway map with Cytoscape software, combined with literature reports and BioGPS database analysis, we believe that among the 16 key genes, SREBF1, FASN, ACADM, HMGCR, and FABP1 have potential in the treatment of NAFLD. Animal experiments confirmed the effect of Anhua fuzhuan tea in improving NAFLD and confirmed that this tea can interfere with the gene expression of the above five targets by the AMPK/PPAR pathway, providing support for Anhua fuzhuan tea interfering with FAM in NAFLD lesions.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Animales , Proteínas Quinasas Activadas por AMP/genética , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Bases de Datos Factuales , , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular
11.
Front Neurosci ; 16: 939915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188475

RESUMEN

The gut microbiota plays an important role in central nervous system (CNS) disorders. Apolipoprotein E (ApoE) can affect the composition of the gut microbiota and is closely related to the CNS. However, the mechanism by which ApoE affects cognitive dysfunction through the gut microbiota-brain axis has thus far not been investigated. In this study, we used wild-type mice and ApoE knockout (ApoE-/-) mice to replicate the aging model and examined the effects of ApoE deletion on cognitive function, hippocampal ultrastructure, synaptophysin (SYP) and postsynaptic density 95 (PSD-95) in aging mice. We also explored whether ApoE deletion affects the gut microbiota and the metabolite profile of the hippocampus in aging mice and finally examined the effect of ApoE deletion on lipids and oxidative stress in aging mice. The results showed that the deletion of ApoE aggravated cognitive dysfunction, hippocampal synaptic ultrastructural damage and dysregulation of SYP and PSD-95 expression in aging mice. Furthermore, ApoE deletion reduced gut microbial makeup in aging mice. Further studies showed that ApoE deletion altered the hippocampal metabolic profile and aggravated dyslipidemia and oxidative stress in aging mice. In brief, our findings suggest that loss of ApoE alters the composition of the gut microbiota, which in turn may affect cognitive function in aging mice through the gut microbiota-brain axis.

12.
Medicine (Baltimore) ; 101(38): e30329, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36197167

RESUMEN

BACKGROUND: Humidification is an important process in clinical oxygen therapy. We aimed to evaluate the effects and safety of humidified versus nonhumidified low-flow oxygen therapy in children with Pierre-Robin syndrome. METHODS: This study was an open-label, single-centered randomized controlled trial (RCT) with a parallel group design. The study protocol has been registered in Chinese Clinical Trial Registry (ChiCTR1900021584). The children were randomized to the humidified versus nonhumidified groups. Average arterial oxygen partial pressure (PaO2) and carbon dioxide partial pressure (PaCO2), incidence of ventilator-associated pneumonia (VAP), nasal cavity dryness, nasal mucosal bleeding and bacterial contamination of the humidified bottle, the cost of nasal oxygen therapy and duration of intensive care unit (ICU) stay were analyzed. RESULTS: A total of 213 children with Pierre-Robin syndrome were included. There were no significant differences in the gender, age, weight, prematurity, duration of anesthesia and surgery duration of mandibular traction between humidified group and nonhumidified group (all P > .05). No significant differences in the average arterial PaO2 and PaCO2 level on the postoperative day 1, 2, and ICU discharge between humidified group and nonhumidified group were found (all P > .05). There were no significant differences in the incidence of nasal cavity dryness, nasal mucosal bleeding, bacterial contamination and VAP, the duration of ICU stay between humidified group and nonhumidified group (all P > .05). The cost of nasal oxygen therapy in the humidified group was significantly less than that of nonhumidified group (P = .013). CONCLUSIONS: Humidifying the oxygen with cold sterile water in the low-flow oxygen therapy in children may be not necessary. Future RCTs with lager sample size and rigorous design are warranted to further elucidate the effects and safety of humidified versus nonhumidified low-flow oxygen therapy.


Asunto(s)
Síndrome de Pierre Robin , Dióxido de Carbono , Niño , Humanos , Oxígeno , Terapia por Inhalación de Oxígeno/métodos , Agua
14.
Front Neurosci ; 16: 949298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844229

RESUMEN

Background: Aging is an important cause of cognitive dysfunction. Liuwei Dihuang decoction (LW), a commonly applied Chinese medicine formula, is widely used for the treatment of aging-related diseases in China. Previously, LW was confirmed to be effective in prolonging life span and reducing oxidative stress in aged mice. Unfortunately, the underlying mechanism of LW remains unclear. The aim of this study was to interpret the mechanism by which LW alleviates cognitive dysfunction related to aging from the perspective of the microbiota-gut-brain axis. Method: All C57BL/6 mice (n = 60) were randomly divided into five groups: the control, model, vitamin E (positive control group), low-dose LW and high-dose LW groups (n = 12 in each group). Except for those in the control group, D-galactose was subcutaneously injected into mice in the other groups to induce the aging model. The antiaging effect of LW was evaluated by the water maze test, electron microscopy, 16S rRNA sequencing, combined LC-MS and GC-MS metabolomics, and ELISA. Results: Liuwei Dihuang decoction ameliorated cognitive dysfunction and hippocampal synaptic ultrastructure damage in aging mice. Moreover, LW decreased Proteobacteria abundance and increased gut microbiota diversity in aging mice. Metabolomic analysis showed that LW treatment was associated with the significantly differential abundance of 14 metabolites, which were mainly enriched in apelin signaling, sphingolipid metabolism, glycerophospholipid and other metabolic pathways. Additionally, LW affected lipid metabolism and oxidative stress in aging mice. Finally, we also found that LW-regulated microbial species such as Proteobacteria and Fibrobacterota had potential relationships with lipid metabolism, oxidative stress and hippocampal metabolites. Conclusion: In brief, LW improved cognitive function in aging mice by regulating lipid metabolism and oxidative stress through restoration of the homeostasis of the microbiota-gut-brain axis.

15.
Stem Cells Dev ; 31(9-10): 258-268, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35403434

RESUMEN

Glioblastoma (GBM), the most aggressive primary heterogeneous primary brain tumor, is a glioma subtype that originates from the glial cells of the central nervous system. Glioblastoma stem cells (GSCs), situated at the top of the hierarchy, initiate and maintain the tumor and are largely accountable for GBM resistance to the mainstay treatment and recurrence. The LIM homeobox transcription factor islet 1 (ISL1) induces tumorigenicity in various tumors; however, its function in GSCs has been less reported. We aimed to generate GSCs from surgical specimens of human GBM and investigate the effect of ISL1 knockdown on GSCs. We established patient-derived GSCs, determined cancer stem cell marker expression, and immunostained GSCs to assess cell viability and apoptosis. We demonstrated that ISL1 deletion decreased the GSC viability and proliferation, and upregulated apoptosis. Moreover, we performed enzyme-linked immunosorbent assay and western blotting and found that ISL1 knockdown affected the expression of sonic hedgehog (SHH) and its downstream regulator GLI1, and further validated these results by supplementing the cells with recombinant SHH. Our results suggested that ISL1 played a critical role in regulating GBM growth and that an ISL1/SHH/GLI1 pathway was required for the maintenance of GBM progression and malignancy. The regulation of GSC growth through ISL1 might be a mechanism of interest for future therapeutic studies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteínas Hedgehog , Proteínas con Homeodominio LIM , Factores de Transcripción , Proteína con Dedos de Zinc GLI1 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Hedgehog/genética , Humanos , Proteínas con Homeodominio LIM/genética , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
16.
Neurosci Lett ; 774: 136526, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35157972

RESUMEN

Promoting neural stem cells (NSCs) survival in the harsh niche is essential to cell replacement therapy for various central nervous system diseases. As an integral component of the extracellular matrix, Periostin (POSTN) has been shown to protect various cell types from hypoxia-ischemia damage. This study aimed to investigate the neuroprotective effects of POSTN on NSCs injury induced by oxygen and glucose deprivation (OGD). Under challenge with OGD, cell viability significantly decreased in cultured mouse NSCs, and supplement POSTN rescued cell viability in a concentration-dependent manner, as shown by CCK-8. TUNEL and propidium iodide/Hoechst staining showed that POSTN pretreatment protected NSCs against OGD-induced apoptosis. Western blot assay demonstrated that POSTN pretreatment inhibited cleavage of caspase-3 and restored the balance of Bcl-2/Bax. And pretreatment with cilengitide (an inhibitor of POSTN receptors) abolished the protective effect of POSTN. Further investigation demonstrated that supplement POSTN inhibited phosphorylation of p38 in a concentration-dependent manner. Moreover, the neuroprotective effect of POSTN was hampered by anisomycin, an activator of p38. We conclude that POSTN pretreatment in cultured mouse NSCs mitigated OGD-induced cell death, and inhibition of the p38 MAPK pathway might be one of the underlying mechanisms. Our findings may provide a novel strategy for enhancing both endogenous and exogenous NSCs survival after ischemia and hypoxia injury.


Asunto(s)
Células-Madre Neurales , Fármacos Neuroprotectores , Animales , Apoptosis , Supervivencia Celular , Glucosa/metabolismo , Hipoxia/metabolismo , Ratones , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Theor Appl Genet ; 135(4): 1401-1411, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146550

RESUMEN

Foundation parents play a critical role in the genetic constituents of the derived genotypes. Deltapine-15 (DLP-15), introduced to China in 1950, is one of the most commonly used parents for early breeding programs in China. However, the formation and inheritance patterns of genomic constituents have not been studied. Therefore, this study aimed at understanding and exploring the genomic architecture of 146 DLP-15 derived cultivars with a common foundation parent DLP-15. Population structure based on sequencing data clustered genotypes into two groups (G1 and G2) supported by principal component analysis. Further exploration led to the identification of Chr-A08 with significantly differentiated regions between two groups. Moreover, we identified genome-wide identity by descent (IBD) segments (840 segments) to understand the genomic inheritance pattern in DLP-15 derived cultivars, spanning the 20-95 Mb region on Chr-A08. Interestingly, Chr-A08 depicted a unique inheritance pattern from DLP-15 to its derived cultivars. IBD-segment-based haplotype analysis suggested significant differences among the two groups. Phenotypic trait association with DLP-derived haplotypes concerning Chr-A08 suggested a significant increase in yield and fiber quality. Furthermore, distinguished IBD segments overlapped with previously reported QTLs concerning fiber yield and quality. Our results systematically identified genomic signatures transmitted from the foundation parent DLP-15 to its derived cultivars and provided a basis for further exploiting excellent haplotypes associated with DLP-15.


Asunto(s)
Fibra de Algodón , Genoma de Planta , Gossypium/genética , Haplotipos , Fenotipo , Sitios de Carácter Cuantitativo
18.
Front Nutr ; 9: 1062323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618677

RESUMEN

Fu brick tea (FBT) and its extracts have good lipid-lowering effects and have been used in the treatment of obesity in previous studies. Unfortunately, the therapeutic effect of FBT on non-alcoholic fatty liver disease (NAFLD) has not been thoroughly studied. In this study, we explored the mechanism by which FBT alleviates NAFLD from the perspective of the gut microbiota and liver metabolites. The results showed that FBT could reduce the body weight, liver weight and abdominal fat of NAFLD mice, and improve liver pathological morphology, liver lipid deposition, blood lipids and liver function. Moreover, FBT improved the diversity of the gut microbiota and changed the profile of liver metabolism in NAFLD mice. Further studies showed that FBT could ameliorate the cecum barrier, and regulate the effects of factors related to lipid synthesis in the cecum and liver of NAFLD mice. In conclusion, the present study confirmed that FBT can alleviate high fat induced NAFLD by regulating the homeostasis of the gut microbiota and liver metabolites.

19.
Front Cell Neurosci ; 15: 732429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552470

RESUMEN

Neural stem cell (NSC) damage has been reported in patients with Alzheimer's disease. Intracellular Aß plays a vital role in NSC damage. Heparan sulfate proteoglycans are potent mediators of Aß enrichment in the brain. We hypothesized the heparan sulfate proteoglycan glypican 4 (Gpc4) regulates Aß internalization by NSCs. We evaluated Gpc4 expression in NSCs from P0-P2 generations using immunofluorescence. Adenovirus and lentivirus were used to regulate Gpc4 expression in NSCs and APP/PS1 mice, respectively. Co-immunoprecipitation was used to determine the relationship between Gpc4, Aß, and low-density lipoprotein receptor-related protein 1 (LRP1). Intracellular Aß concentrations were detected using enzyme-linked immunosorbent assay and immunofluorescence. The role of Gpc4/LRP1 on toxic/physical Aß-induced effects was evaluated using the JC-1 kit, terminal deoxynucleotidyl transferase dUPT nick end labeling, and western blotting. Gpc4 was stably expressed in NSCs, neurons, and astrocytes. Gpc4 was upregulated by Aß in NSCs and regulated Aß internalization. Gpc4 attenuation reduced Aß uptake; Gpc4 overexpression increased Aß uptake. Gpc4 regulated Aß internalization through LRP1 and contributed to Aß internalization and toxic/physical concentrations of Aß-induced mitochondrial membrane potential and cell apoptosis, partly via LRP1. Therefore, Gpc4 is a key regulator of Aß enrichment in NSCs. Inhibiting Gpc4 rescued the Aß-induced toxic effect and attenuated the nontoxic Aß enrichment into intracellular toxic concentrations. Gpc4 contributed to Aß internalization and toxic/physical concentrations of Aß-induced mitochondrial membrane potential damage and cell apoptosis, partly via LRP1. These findings suggest a potential role of Gpc4 in treating Alzheimer's disease at an early stage, by targeting NSCs.

20.
Brain Res ; 1767: 147561, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133989

RESUMEN

Hypoxic ischemic brain injury (HIBI) has been one of the most severe central nervous system (CNS) diseases with high fatality and disability rate. Neural stem cells (NSCs) persist in the mammalian brain throughout life and NSCs-associated therapies might be a promising strategy for the HIBI treatment. In this study, we identified that type 4 metabotropic glutamate receptor (mGluR4) was expressed in cultured human NSCs (hNSCs) isolated from the human fetus cortex and further established the oxygen and glucose deprivation (OGD) model in hNSCs to study the role of mGluR4 in hypoxic and ischemic injury. The results indicated that mGluR4 activation by using VU0155041 (mGluR4-specific agonist) markedly attenuated the OGD-induced alterations in TUNEL staining, apoptosis rate, cleavages of pro-caspase-8, -9, -3, and Bcl-2/Bax expression balance. Furthermore, mGluR4 activation inhibited the ASK1/p38 signaling pathway. Asiatic acid, as a p38 MAPK activator, is capable of abolishing the neuroprotective effect of mGluR4, while both NQDI-1 (ASK-1 inhibitor) and SB203580 (p38 MAPK inhibitor) exerted similar effects to VU0155041 in the OGD-induced hNSC damage. In conclusion, this study indicates that mGluR4 activation protects hNSCs against the OGD-induced cell death via inhibiting the ASK1-p38 pathway. Activation of mGluR4 might be a promising strategy for enhancing NSCs survival in hypoxic and ischemic injury.


Asunto(s)
Hipoxia-Isquemia Encefálica/terapia , MAP Quinasa Quinasa Quinasa 5/metabolismo , Células-Madre Neurales/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glucosa/deficiencia , Glucosa/metabolismo , Humanos , Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fármacos Neuroprotectores , Oxígeno/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...