Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677673

RESUMEN

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Asunto(s)
Células Endoteliales , Pulmón , Proteínas Serina-Treonina Quinasas , Receptores Acoplados a Proteínas G , Regeneración , Transducción de Señal , Trombospondinas , beta Catenina , Animales , Trombospondinas/metabolismo , Trombospondinas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo , beta Catenina/genética , Células Endoteliales/metabolismo , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Proliferación Celular , Masculino , Sepsis/metabolismo , Inflamación/metabolismo , Inflamación/patología
2.
Acta Physiol (Oxf) ; 240(1): e14059, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987182

RESUMEN

AIM: Senescence of alveolar type II (AT2) cells is an important driver of pulmonary fibrosis. This study aimed to investigate whether and how dysregulation of hydrogen sulfide (H2 S) production affected AT2 cell senescence, and then explored the effect of H2 S on the communication between AT2 and fibroblasts. METHODS: ICR mice were intratracheally administered with bleomycin (3 mg/kg). Sodium hydrosulfide (NaHS, 28 µmol/kg/d) was intraperitoneally injected for 2 weeks. The H2 S-generating enzyme cystathionine-ß-synthase (CBS) knockout heterozygous (CBS+/- ) mice were used as a low H2 S production model. RESULTS: Analysis of microarray datasets revealed downregulation of H2 S-generating enzymes in lung tissues of patients with pulmonary fibrosis. Decreased H2 S production was correlated with higher levels of cell senescence markers p53 and p21 in bleomycin-induced lung fibrosis. CBS+/- mice exhibited increased levels of p53 and p21. The numbers of AT2 cells positive for p53 and p21 were increased in CBS+/- mice as compared to control mice. H2 S donor NaHS attenuated bleomycin-induced AT2 cell senescence both in vivo and in vitro. H2 S donor suppressed bleomycin-induced senescence-associated secretory phenotype (SASP) of AT2 cells via inhibiting p53/p21 pathway, consequently suppressing proliferation and myofibroblast transdifferentiation of fibroblasts. Mechanically, H2 S suppressed p53 expression by enhancing the mouse double-minute 2 homologue (MDM2)-mediated ubiquitination and degradation of p53. CONCLUSION: H2 S inactivated p53-p21 pathway, consequently suppressing AT2 cell senescence as well as cell communication between senescent AT2 cells and fibroblasts. Aberrant H2 S synthesis may contribute to the development of pulmonary fibrosis through promoting the activation loop involving senescent AT2 cells and activated fibroblasts.


Asunto(s)
Sulfuro de Hidrógeno , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos ICR , Senescencia Celular , Bleomicina/metabolismo , Bleomicina/farmacología , Proteínas Proto-Oncogénicas c-mdm2
3.
Antioxidants (Basel) ; 12(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136144

RESUMEN

Unfolded protein response (UPR) signaling and endoplasmic reticulum (ER) stress have been linked to pulmonary fibrosis. However, the relationship between UPR status and pulmonary function and prognosis in idiopathic pulmonary fibrosis (IPF) patients remains largely unknown. Through a series of bioinformatics analyses, we established a correlation between UPR status and pulmonary function in IPF patients. Furthermore, thrombospondin-1 (TSP-1) was identified as a potential biomarker for prognostic evaluation in IPF patients. By utilizing both bulk RNA profiling and single-cell RNA sequencing data, we demonstrated the upregulation of TSP-1 in lung fibroblasts during pulmonary fibrosis. Gene set enrichment analysis (GSEA) results indicated a positive association between TSP-1 expression and gene sets related to the reactive oxygen species (ROS) pathway in lung fibroblasts. TSP-1 overexpression alone induced mild ER stress and pulmonary fibrosis, and it even exacerbated bleomycin-induced ER stress and pulmonary fibrosis. Mechanistically, TSP-1 promoted ER stress and fibroblast activation through CD47-dependent ROS production. Treatment with either TSP-1 inhibitor or CD47 inhibitor significantly attenuated BLM-induced ER stress and pulmonary fibrosis. Collectively, these findings suggest that the elevation of TSP-1 during pulmonary fibrosis is not merely a biomarker but likely plays a pathogenic role in the fibrotic changes in the lung.

4.
Acta Physiol (Oxf) ; 239(4): e14036, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37607126

RESUMEN

AIM: Exercise training exerts protective effects against sepsis-associated multiple organ dysfunction. This study aimed to investigate whether aerobic exercise protected against sepsis-associated acute kidney injury (AKI) via modulating R-spondin 3 (RSPO3) expression. METHODS: To investigate the effects of aerobic exercise on lipopolysaccharide (LPS)-induced AKI, LPS (20 mg/kg) was intraperitoneally injected after six weeks of treadmill training. To investigate the role of RSPO3 in LPS-induced AKI, wild-type (WT) or inducible endothelial cell-specific RSPO3 knockout (RSPO3EC-/- ) mice were intraperitoneally injected with 12 mg/kg LPS. RSPO3 was intraperitoneally injected 30 min before LPS treatment. RESULTS: Aerobic exercise-trained mice were more resistant to LPS-induced body weight loss and hypothermia and had a significant higher survival rate than sedentary mice exposed to LPS. Exercise training restored the LPS-induced decreases in serum and renal RSPO3 levels. Exercise or RSPO3 attenuated, whereas inducible endothelial cell-specific RSPO3 knockout exacerbated LPS-induced renal glycocalyx loss, endothelial hyperpermeability, inflammation, and AKI. Bioinformatics analysis results revealed significant increases in the expression of matrix metalloproteinases (MMPs) in kidney tissues of mice exposed to sepsis or endotoxaemia, which was validated in renal tissue from LPS-exposed mice and LPS-treated human microvascular endothelial cells (HMVECs). Both RSPO3 and MMPs inhibitor restored LPS-induced downregulation of tight junction protein, adherens junction protein, and glycocalyx components, thus ameliorating LPS-induced endothelial leakage. Exercise or RSPO3 reversed LPS-induced upregulation of MMPs in renal tissues. CONCLUSION: Increased renal expression of RSPO3 contributes to aerobic exercise-induced protection against LPS-induced renal endothelial hyperpermeability and AKI by suppressing MMPs-mediated disruption of glycocalyx and tight and adherens junctions.


Asunto(s)
Lesión Renal Aguda , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/farmacología , Ratones Endogámicos C57BL , Sepsis/complicaciones , Sepsis/metabolismo
5.
Cell Death Dis ; 14(4): 278, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076499

RESUMEN

Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.


Asunto(s)
Antígeno CD56 , Depresión , Hipocampo , Calicreínas , Animales , Ratones , Ratas , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Ratones Noqueados , Ratas Transgénicas , Hipocampo/metabolismo , Hipocampo/patología , Regulación hacia Arriba , Depresión/metabolismo , Depresión/patología , Neuronas/patología , Apoptosis , Biomimética , Calicreínas/metabolismo , Antígeno CD56/metabolismo
6.
J Surg Res ; 281: 264-274, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219938

RESUMEN

INTRODUCTION: Persistent lung inflammation is a characteristic of sepsis-induced lung injury. Matrine, the active ingredient from Sophora flavescens, has exhibited anti-inflammatory activities. This study investigated the effects of prophylactic administration of matrine on macrophage polarization, apoptosis, and tissue injury in a cecal ligation and puncture (CLP)-induced murine lung injury model. METHODS: Mice were randomly allocated into four groups: Sham, CLP, Sham + Matrine, and CLP + Matrine. Lung tissues were collected at 24 h post-CLP. Histopathology and immunofluorescence analysis were performed to evaluate lung injury and macrophage infiltration in the lung, respectively. Caspase-3 activities, TUNEL staining, and anti-apoptotic proteins were examined to assess apoptosis. To determine the mechanism of action of matrine, protein levels of Sirtuin 1 (SIRT1), nuclear factor κB (NF-κB), p53 and the messenger RNA levels of p53-mediated proapoptotic genes were examined to elucidate the associated signaling pathways. RESULTS: Histopathological evaluation showed that matrine prophylaxis attenuated sepsis-induced lung injury. Matrine prophylaxis attenuated sepsis-induced infiltration of the total population of macrophages in the lung. Matrine inhibited M1 macrophage infiltration, but increased M2 macrophage infiltration, thus resulting in a decrease in the proportion of M1 to M2 macrophages in septic lung. Sepsis-induced lung injury was associated with apoptotic cell death as evidenced by increases in caspase-3 activity, TUNEL-positive cells, and decreases in antiapoptotic proteins, all of which were reversed by matrine prophylaxis. Matrine restored sepsis-induced downregulation of SIRT1 and deacetylation of NF-κB p65 subunit and p53, thus inactivating NF-κB pathway and suppressing p53-induced proapoptotic pathway in septic lung. CONCLUSIONS: In summary, this study demonstrated that matrine exhibited pro-M2 macrophage polarization and antiapoptotic effects in sepsis-induced lung injury, which might be, at least partly, due to the modulation of SIRT1/NF-κB and SIRT1/p53 pathways.


Asunto(s)
Lesión Pulmonar , Sepsis , Animales , Ratones , Apoptosis , Caspasa 3/metabolismo , Lesión Pulmonar/complicaciones , Macrófagos/metabolismo , FN-kappa B/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor , Matrinas
7.
Cancers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36358792

RESUMEN

Cancer remains a serious social health problem, and immunotherapy has become the major treatments in tumor treatment. Additionally, improving the efficiency and safety of treatment is necessary. Further, more therapy targets are warranted for future tumor treatments. In this review, in addition to examining the currently recognized role of immune regulation, we focus on the proliferative role of 15 immune checkpoints in various tumors, including PD1, PD-L1, FGL1, CD155, CD47, SIRPα, CD276, IDO1, SIGLEC-15, TIM3, Galectin-9, CD70, CD27, 4-1BBL, and HVEM. We managed to conclude that various immune checkpoints such as PD1/PD-L1, FGL1, CD155, CD47/SIRPα, CD276, and SIGLEC-15 all regulate the cell cycle, and specifically through Cyclin D1 regulation. Furthermore, a variety of signal pathways engage in proliferation regulation, such as P13K, AKT, mTOR, and NK-κB, which are also the most common pathways involved in the regulation of immune checkpoint proliferation. Currently, only PD1/PD-L1, CD47/SIRPα, TIM3/Galectin-9, and CD70/CD27 checkpoints have been shown to interact with each other to regulate tumor proliferation in pairs. However, for other immune checkpoints, the role of their receptors or ligands in tumor proliferation regulation is still unknown, and we consider the enormous potential in this area. An increasing number of studies have validated the various role of immune checkpoints in tumors, and based on this literature review, we found that most of the immune checkpoints play a dual regulatory role in immunity and proliferation. Therefore, the related pathways in proliferation regulation can served the role of therapy targets in tumor therapy. Further, great potential is displayed by IDO1, SIGLEC-15, 4-1BBL, and HVEM in tumor proliferation regulation, which may become novel therapy targets in tumor treatment.

8.
Front Immunol ; 13: 1014053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268014

RESUMEN

Rational: Lung cancer is the most common tumor worldwide, with the highest mortality rate and second highest incidence. Immunotherapy is one of the most important treatments for lung adenocarcinoma (LUAD); however, it has relatively low response rate and high incidence of adverse events. Herein, we explored the therapeutic potential of fibrinogen-like protein 1 (FGL1) for LUAD. Methods: Data from GEPIA and ACLBI databases were assessed to explore gene-gene correlations and tumor immune infiltration patterns. A total of 200 patients with LUAD were recruited. FGL1 levels in the serum and cellular supernatant were determined by enzyme-linked immunosorbent assay. In vitro and in vivo experiments were performed to assess the effect FGL1 on the proliferation of LUAD cells. Cocultures were performed to explore the effect of FGL1 knockdown in lung cancer cells on T cells, concerning cytokine secretion and viability. PROMO and hTFtarget databases were used for transcription factor prediction. Quantitative polymerase chain reaction (qPCR), chromatin immunoprecipitation, and dual luciferase reporter assays were performed to validate the identified transcription factor of FGL1. Immunoprecipitation, mass spectrometry and gene ontology analysis were performed to explore the downstream partners of FGL1. Results: FGL1 expression in LUAD was positively associated with PDL1, but not for PD1 expression. Moreover, FGL1 was positively associated with the CD3D expression and negatively associated with FOXP3, S100A9, and TPSB2 within the tumor site. FGL1 promotes the secretion of interleukin-2 by T cells in vitro, simultaneously inducing their apoptosis. Indeed, YY1 is the upstream molecule of FGL1 was found to be transcriptionally regulated by YY1 and to directly by to MYH9 to promote the proliferation of LUAD cells in vitro and in vivo. Conclusions: FGL1 is involved in the immunological and proliferative regulation of LUAD cells by controlling the secretion of important immune-related cytokines via the YY1-FGL1-MYH9 axis. Hence, targeting FGL1 in LUAD may pave the way for the development of new immunotherapies for tackling this malignancy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Interleucina-2/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Fibrinógeno/metabolismo , Factores de Transcripción Forkhead/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
9.
Sheng Li Xue Bao ; 74(4): 585-595, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-35993210

RESUMEN

The purpose of this study was to establish a three-dimensional (3D) organoid culture system for type 2 alveolar epithelial (AT2) cells in mice. AT2 cells were isolated from ICR mouse lung and purified by enzymatic digestion and MicroBeads sorting. The purity of AT2 cells was determined by immunofluorescence (IF) staining using an antibody against proSPC. The AT2 differentiation was examined by IF staining with proSPC/HopX and proSPC/T1α antibodies, and proliferation of AT2 cells was assessed by EdU incorporation assays after two-dimensional (2D) culture for 8 days. In addition, AT2 cells were co-cultured with mouse lung fibroblasts (Mlg) in three-dimensional (3D) culture system. After 13 days of co-culture, the organoids were fixed in 2% paraformaldehyde for histological analysis and IF staining. The results showed that the purity of the AT2 cells was over 95%, as assessed by proSPC staining. 2D cultured AT2 cells were negative for EdU staining, which indicates that no proliferation occurs. proSPC expression was gradually disappeared, whereas T1α and HopX expression was gradually increased after 3, 5 and 8 days of culture. In 3D culture system, the alveolar organoids were formed after co-culturing AT2 cells with Mlg for 4 days. Histological analysis showed that alveolar organoids displayed a hollow morphology. proSPC was highly expressed in the peripheral cells, whereas type 1 alveolar epithelial (AT1) cells transdifferentiated from AT2 cells expressing HopX were mainly located in the interior of organoid bodies after 13 days. Some of the proSPC-positive AT2 cells located in the outer circle of alveolar organoids were stained positive for both proSPC and EdU, indicating that the AT2 cells in the alveolar organoids were proliferative. These results showed that the 3D organoid culture system of mouse AT2 cells was successfully established.


Asunto(s)
Células Epiteliales Alveolares , Organoides , Células Epiteliales Alveolares/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células Epiteliales , Pulmón , Ratones , Ratones Endogámicos ICR
10.
Ann Transl Med ; 10(11): 630, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35813334

RESUMEN

Background: Autophagy is activated during the pathogenesis of endothelial dysfunction and sepsis-associated acute lung injury (ALI). This study aimed to investigate whether autophagy affected endothelial barrier dysfunction and lung injury in a murine model of lipopolysaccharide (LPS)-induced ALI, and then further clarify whether forkhead box O1 (FOXO1), an autophagy-related transcriptional factor, contributed to autophagy activation and ALI induced by LPS. Methods: Male C57BL/6 mice were treated with LPS (30 mg/kg), and then were allocated to a control group and an LPS group with or without FOXO1 inhibitor (AS1842856) treatment, respectively. Primary cultured mouse lung vascular endothelial cells (MLVECs) were treated with LPS, autophagy inhibitor 3-methyladenine (3-MA), AS1842856, and small interfering RNA (siRNA) targeting autophagy-related gene 5 (ATG5) or FOXO1. Endothelial autophagic flux was assessed by transfection of MLVECs with red fluorescent protein (RFP)-green fluorescent protein (GFP) tandem fluorescent-tagged LC3 (RFP-GFP-LC3) adenovirus. Endothelial permeability was analyzed by the diffusion of fluorescein isothiocyanate-carboxymethyl (FITC)-dextran through the endothelial monolayer. Evans blue albumin tracer was used to measure the pulmonary transvascular permeability, and hematoxylin and eosin (H&E) staining was used to observe pathological changes in the lung tissues. Immunofluorescence staining was also used to detect the expression of zonula occludens-1 (ZO-1) and FOXO1. Results: This study found autophagy induction in lung tissues of endotoxemic mice and LPS-treated MLVECs, as evidenced by elevated expression of light chain 3 II (LC3-II) and Unc-51-like kinase (ULK1) and autophagic flux. LPS treatment decreased vascular endothelial (VE)-cadherin and ZO-1 expression and increased endothelial permeability in MLVECs, which were significantly alleviated by autophagy inhibitor 3-MA and ATG5 siRNA. It was found that both phosphorylated FOXO1 and FOXO1 were upregulated in the lung tissues of endotoxemic mice and LPS-treated MLVECs. Both FOXO1 inhibitor AS1842856 and FOXO1 siRNA suppressed LPS-induced autophagy and endothelial cell injury in MLVECs. Moreover, FOXO1 inhibition profoundly alleviated autophagy, lung endothelial hyperpermeability, and ALI in endotoxemic mice. Conclusions: This work demonstrated that FOXO1 upregulation is an important contributor to LPS-induced autophagy in pulmonary VE cells. The detrimental effects of FOXO1 in endotoxemia-associated endothelial dysfunction and ALI are partly due to its potent pro-autophagic property. Inhibition of FOXO1 may be a potential therapeutic option for the treatment of ALI.

11.
Biomark Res ; 10(1): 49, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831836

RESUMEN

Immunotherapy has become the major treatment for tumors in clinical practice, but some intractable problems such as the low response rate and high rates of immune-related adverse events still hinder the progress of tumor immunotherapy. Hence, it is essential to explore additional immunotherapy treatment targets. In this review, we focus on the structure, expression and expression-related mechanisms, interactions, biological functions and the progress in preclinical/clinical research of IGSF11 and VISTA in tumors. We cover the progress in recent research with this pair of immune checkpoints in tumor immune regulation, proliferation, immune resistance and predictive prognosis. Both IGSF11 and VISTA are highly expressed in tumors and are modulated by various factors. They co-participate in the functional regulation of immune cells and the inhibition of cytokine production. Besides, in the downregulation of IGSF11 and VISTA, both inhibit the growth of some tumors. Preclinical and clinical trials all emphasize the predictive role of IGSF11 and VISTA in the prognosis of tumors, and that the predictive role of the same gene varies from tumor to tumor. At present, further research is proving the enormous potential of IGSF11 and VISTA in tumors, and especially the role of VISTA in tumor immune resistance. This may prove to be a breakthrough to solve the current clinical immune resistance, and most importantly, since research has focused on VISTA but less on IGSF11, IGSF11 may be the next candidate for tumor immunotherapy.

12.
Front Physiol ; 13: 844539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464091

RESUMEN

Chronic inflammation and oxidative stress are major triggers of the imbalance between protein synthesis and degradation during the pathogenesis of immobilization-induced muscle atrophy. This study aimed to elucidate the effects of hydrogen sulfide (H2S), a gas transmitter with potent anti-inflammatory and antioxidant properties, on immobilization-induced muscle atrophy. Mice were allocated to control and immobilization (IM) groups, which were treated with slow (GYY4137) or rapid (NaHS) H2S releasing donors for 14 days. The results showed that both GYY4137 and NaHS treatment reduced the IM-induced muscle loss, and increased muscle mass. The IM-induced expressions of Muscle RING finger 1 (MuRF1) and atrogin-1, two muscle-specific E3 ubiquitin ligases, were decreased by administration of GYY4137 or NaHS. Both GYY4137 and NaHS treatments alleviated the IM-induced muscle fibrosis, as evidenced by decreases in collagen deposition and levels of tissue fibrosis biomarkers. Moreover, administration of GYY4137 or NaHS alleviated the IM-induced infiltration of CD45 + leukocytes, meanwhile inhibited the expressions of the pro-inflammatory biomarkers in skeletal muscles. It was found that administration of either GYY4137 or NaHS significantly attenuated immobilization-induced oxidative stress as indicated by decreased H2O2 levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity, as well as increased total antioxidant capacity (T-AOC), nuclear factor erythroid-2-related factor 2 (NRF2) and NRF2 downstream anti-oxidant targets levels in skeletal muscles. Collectively, the present study demonstrated that treatment with either slow or rapid H2S releasing donors protected mice against immobilization-induced muscle fibrosis and atrophy. The beneficial effects of H2S on immobilization-induced skeletal muscle atrophy might be due to both the anti-inflammatory and anti-oxidant properties of H2S.

13.
Transl Lung Cancer Res ; 11(3): 404-419, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35399566

RESUMEN

Background: The mechanisms involved in the malignant progression of lung adenocarcinoma (LUAD) are still inconclusive. Fibrinogen-like protein 1 (FGL1) and LAG3 are a pair of immune checkpoints that create an inhibitory immune microenvironment in tumors. However, other roles of FGL1 in LUAD have not been extensively studied. Our study aims to explore the role of FGL1 in the malignant progression of LUAD and to provide new therapeutic targets and strategies for LUAD treatment. Methods: Differential gene expression of FGL1 was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, UALCAN, and Gene Expression Omnibus (GEO) databases. A pan-cancer analysis was conducted using the Oncomine, TIMER, and UALCAN databases. A total of 140 tumor tissues and paired normal tissues were collected, IHC and immunofluorescence staining were used to explore the expression of FGL1. GeneMANIA database and STRING database were used to analyze gene-gene interaction and protein-protein interaction, respectively. A mutation analysis was conducted using the cBioPortal database, and an immune infiltration analysis was conducted using the TIMER database. A survival analysis was carried out using the GEPIA and PrognoScan database. The knockdown of FGL1 was confirmed by western blot (WB) and immunofluorescence staining. Cell proliferation was tested by cell cycle analysis and real-time cell analysis. RNA sequencing (RNA-seq) was used to explore the differential genes of FGL1 knockdown in LUAD cells. Results: Multiple databases showed that FGL1 was highly expressed in LUAD. The results of IHC indicated that FGL1 was highly expressed in the cytoplasm of LUAD cells. FGL1 was negatively associated with immune infiltration in LUAD. The main mutation of FGL1 is deep deletion, the altered group and high expression group indicated poor prognosis. The downregulation of FGL1 lead to a significantly decreased percentage of PC9 cells in S phase, but had little effect on the proliferation of Jurkat T cells. RNA-seq and GSEA analysis indicated that the differential genes were mainly enriched in MYC-target genes, which suggested that the downregulation of FGL1 inhibited cell proliferation by regulating MYC-target genes. Conclusions: FGL1 exerts in LUAD proliferation in addition to immune regulation. The downregulation of FGL1 inhibits the proliferation of LUAD cells by regulating MYC-target genes. Thus, FGL1 may be a novel therapeutic target in LUAD.

14.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34443758

RESUMEN

In consideration of the presented optical-thermally excited resonant mass detection scheme, molecular dynamics calculations are performed to investigate the thermal actuation and resonant mass sensing mechanism. The simulation results indicate that an extremely high temperature exists in a 6% central area of the graphene sheet exposed to the exciting laser. Therefore, constraining the laser driving power and enlarging the laser spot radius are essential to weaken the overheating in the middle of the graphene sheet, thus avoiding being burned through. Moreover, molecular dynamics calculations demonstrate a mass sensitivity of 214 kHz/zg for the graphene resonator with a pre-stress of 1 GPa. However, the adsorbed mass would degrade the resonant quality factor from 236 to 193. In comparison, the sensitivity and quality factor could rise by 1.3 and 4 times, respectively, for the graphene sheet with a pre-stress of 5 GPa, thus revealing the availability of enlarging pre-stress for better mass sensing performance.

15.
Front Oncol ; 11: 693321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367975

RESUMEN

This study highlights aspects of the latest clinical research conducted on the relationship between immune checkpoints and tumor metastasis. The overview of each immune checkpoint is divided into the following three sections: 1) structure and expression; 2) immune mechanism related to tumor metastasis; and 3) clinical research related to tumor metastasis. This review expands on the immunological mechanisms of 17 immune checkpoints, including TIM-3, CD47, and OX-40L, that mediate tumor metastasis; evidence shows that most of these immune checkpoints are expressed on the surface of T cells, which mainly exert immunomodulatory effects. Additionally, we have summarized the roles of these immune checkpoints in the diagnosis and treatment of metastatic tumors, as these checkpoints are considered common predictors of metastasis in various cancers such as prostate cancer, non-Hodgkin lymphoma, and melanoma. Moreover, certain immune checkpoints can be used in synergy with PD-1 and CTLA-4, along with the implementation of combination therapies such as LIGHT-VTR and anti-PD-1 antibodies. Presently, most monoclonal antibodies generated against immune checkpoints are under investigation as part of ongoing preclinical or clinical trials conducted to evaluate their efficacy and safety to establish a better combination treatment strategy; however, no significant progress has been made regarding monoclonal antibody targeting of CD28, VISTA, or VTCN1. The application of immune checkpoint inhibitors in early stage tumors to prevent tumor metastasis warrants further evidence; the immune-related adverse events should be considered before combination therapy. This review aims to elucidate the mechanisms of immune checkpoint and the clinical progress on their use in metastatic tumors reported over the last 5 years, which may provide insights into the development of novel therapeutic strategies that will assist with the utilization of various immune checkpoint inhibitors.

16.
FASEB J ; 35(9): e21823, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34396581

RESUMEN

Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Condicionamiento Físico Animal/fisiología , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/fisiología , Caspasa 3/metabolismo , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/fisiopatología , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/metabolismo , Transducción de Señal/fisiología
17.
Theranostics ; 11(9): 4207-4231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754057

RESUMEN

Rationale: Among all the diabetic complications, diabetic cardiomyopathy, which is characterized by myocyte loss and myocardial fibrosis, is the leading cause of mortality and morbidity in diabetic patients. Tissue kallikrein-related peptidases (KLKs) are secreted serine proteases, that have distinct and overlapping roles in the pathogenesis of cardiovascular diseases. However, whether KLKs are involved in the development of diabetic cardiomyopathy remains unknown.The present study aimed to determine the role of a specific KLK in the initiation of endothelial-to-mesenchymal transition (EndMT) during the pathogenesis of diabetic cardiomyopathy. Methods and Results-By screening gene expression profiles of KLKs, it was found that KLK8 was highly induced in the myocardium of mice with streptozotocin-induced diabetes. KLK8 deficiency attenuated diabetic cardiac fibrosis, and rescued the impaired cardiac function in diabetic mice. Small interfering RNA (siRNA)-mediated KLK8 knockdown significantly attenuated high glucose-induced endothelial damage and EndMT in human coronary artery endothelial cells (HCAECs). Diabetes-induced endothelial injury and cardiac EndMT were significantly alleviated in KLK8-deficient mice. In addition, transgenic overexpression of KLK8 led to interstitial and perivascular cardiac fibrosis, endothelial injury and EndMT in the heart. Adenovirus-mediated overexpression of KLK8 (Ad-KLK8) resulted in increases in endothelial cell damage, permeability and transforming growth factor (TGF)-ß1 release in HCAECs. KLK8 overexpression also induced EndMT in HCAECs, which was alleviated by a TGF-ß1-neutralizing antibody. A specificity protein-1 (Sp-1) consensus site was identified in the human KLK8 promoter and was found to mediate the high glucose-induced KLK8 expression. Mechanistically, it was identified that the vascular endothelial (VE)-cadherin/plakoglobin complex may associate with KLK8 in HCAECs. KLK8 cleaved the VE-cadherin extracellular domain, thus promoting plakoglobin nuclear translocation. Plakoglobin was required for KLK8-induced EndMT by cooperating with p53. KLK8 overexpression led to plakoglobin-dependent association of p53 with hypoxia inducible factor (HIF)-1α, which further enhanced the transactivation effect of HIF-1α on the TGF-ß1 promoter. KLK8 also induced the binding of p53 with Smad3, subsequently promoting pro-EndMT reprogramming via the TGF-ß1/Smad signaling pathway in HCAECs. The in vitro and in vivo findings further demonstrated that high glucose may promote plakoglobin-dependent cooperation of p53 with HIF-1α and Smad3, subsequently increasing the expression of TGF-ß1 and the pro-EndMT target genes of the TGF-ß1/Smad signaling pathway in a KLK8-dependent manner. Conclusions: The present findings uncovered a novel pro-EndMT mechanism during the pathogenesis of diabetic cardiac fibrosis via the upregulation of KLK8, and may contribute to the development of future KLK8-based therapeutic strategies for diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Fibrosis/genética , Fibrosis/patología , Calicreínas/genética , Animales , Células Cultivadas , Endotelio/patología , Transición Epitelial-Mesenquimal/genética , Corazón/fisiología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Miocardio/patología , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/metabolismo , gamma Catenina/metabolismo
18.
J Cell Mol Med ; 25(8): 4124-4135, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624364

RESUMEN

Thrombocytopenia is independently related with increased mortality in severe septic patients. Renin-angiotensin system (RAS) is elevated in septic subjects; accumulating studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway by promoting reactive oxygen species (ROS) production. However, the mechanisms underlying the relationship of platelet apoptosis and RAS system in sepsis have not been fully elucidated. The present study aimed to elucidate whether the RAS was involved in the pathogenesis of sepsis-associated thrombocytopenia and explore the underlying mechanisms. We found that elevated plasma Ang II was associated with decreased platelet count in both patients with sepsis and experimental animals exposed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apoptosis in a concentration-dependent manner in primary isolated platelets, which was blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angiotensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by losartan attenuated LPS-induced platelet apoptosis and alleviated sepsis-associated thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a concentration-dependent manner in primary isolated platelets, which was partially reversed by the AT1R antagonist losartan. The present study demonstrated that elevated Ang II directly stimulated platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner in sepsis-associated thrombocytopenia. The results would helpful for understanding the role of RAS system in sepsis-associated thrombocytopenia.


Asunto(s)
Angiotensina II/farmacología , Apoptosis , Plaquetas/patología , Estrés Oxidativo , Receptor de Angiotensina Tipo 1/metabolismo , Sepsis/complicaciones , Trombocitopenia/patología , Adulto , Anciano , Anciano de 80 o más Años , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/genética , Transducción de Señal , Trombocitopenia/etiología , Trombocitopenia/metabolismo
19.
Oxid Med Cell Longev ; 2021: 8889313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628393

RESUMEN

Dysregulation of matrix metalloproteinase- (MMP-) 9 is implicated in the pathogenesis of acute lung injury (ALI). However, it remains controversial whether MMP-9 improves or deteriorates acute lung injury of different etiologies. The receptor for advanced glycation end products (RAGE) plays a critical role in the pathogenesis of acute lung injury. MMPs are known to mediate RAGE shedding and release of soluble RAGE (sRAGE), which can act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. Therefore, this study is aimed at clarifying whether and how pulmonary knockdown of MMP-9 affected sepsis-induced acute lung injury as well as the release of sRAGE in a murine cecal ligation and puncture (CLP) model. The analysis of GEO mouse sepsis datasets GSE15379, GSE52474, and GSE60088 revealed that the mRNA expression of MMP-9 was significantly upregulated in septic mouse lung tissues. Elevation of pulmonary MMP-9 mRNA and protein expressions was confirmed in CLP-induced mouse sepsis model. Intratracheal injection of MMP-9 siRNA resulted in an approximately 60% decrease in pulmonary MMP-9 expression. It was found that pulmonary knockdown of MMP-9 significantly increased mortality of sepsis and exacerbated sepsis-associated acute lung injury. Pulmonary MMP-9 knockdown also decreased sRAGE release and enhanced sepsis-induced activation of the RAGE/nuclear factor-κB (NF-κB) signaling pathway, meanwhile aggravating sepsis-induced oxidative stress and inflammation in lung tissues. In addition, administration of recombinant sRAGE protein suppressed the activation of the RAGE/NF-κB signaling pathway and ameliorated pulmonary oxidative stress, inflammation, and lung injury in CLP-induced septic mice. In conclusion, our data indicate that MMP-9-mediated RAGE shedding limits the severity of sepsis-associated pulmonary edema, inflammation, oxidative stress, and lung injury by suppressing the RAGE/NF-κB signaling pathway via the decoy receptor activities of sRAGE. MMP-9-mediated sRAGE production may serve as a self-limiting mechanism to control and resolve excessive inflammation and oxidative stress in the lung during sepsis.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Metaloproteinasa 9 de la Matriz/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sepsis/complicaciones , Regulación hacia Arriba , Animales , Ciego , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Inflamación/patología , Ligadura , Pulmón/patología , Masculino , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Punciones , Transducción de Señal , Solubilidad
20.
Theranostics ; 11(6): 2505-2521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33456556

RESUMEN

Rationale: The lung-protective effects of dopamine and its role in the pathology of ventilator-induced lung injury (VILI) are emerging. However, the underlying mechanisms are still largely unknown. Objective: To investigate the contribution of dopamine receptor dysregulation in the pathogenesis of VILI and therapeutic potential of dopamine D1 receptor (DRD1) agonist in VILI. Methods: The role of dopamine receptors in mechanical stretch-induced endothelial barrier dysfunction and lung injury was studied in DRD1 knockout mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in lung samples from patients who underwent pulmonary lobectomy with mechanical ventilation for different time periods. Measurements and Main Results: DRD1 was downregulated in both surgical patients and mice exposed to mechanical ventilation. Prophylactic administration of dopamine or DRD1 agonist attenuated mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. By contrast, pulmonary knockdown or global knockout of DRD1 exacerbated these effects. Prophylactic administration of dopamine attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent endothelial hyperpermeability through DRD1 signaling. We identified that cyclic stretch-induced glycogen-synthase-kinase-3ß activation led to phosphorylation and activation of histone deacetylase 6 (HDAC6), which resulted in deacetylation of α-tubulin. Upon activation, DRD1 signaling attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent lung endothelial barrier dysfunction through cAMP/exchange protein activated by cAMP (EPAC)-mediated inactivation of HDAC6. Conclusions: This work identifies a novel protective role for DRD1 against mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. Further study of the mechanisms involving DRD1 in the regulation of microtubule stability and interference with DRD1/cAMP/EPAC/HDAC6 signaling may provide insight into therapeutic approaches for VILI.


Asunto(s)
Regulación hacia Abajo/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Pulmón/metabolismo , Receptores de Dopamina D1/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , AMP Cíclico/metabolismo , Histona Desacetilasa 6/metabolismo , Humanos , Ratones , Ratones Noqueados , Respiración Artificial/métodos , Transducción de Señal/fisiología , Estrés Mecánico , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA