Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biomed Pharmacother ; 174: 116572, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626519

RESUMEN

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Asunto(s)
Curcumina , ADN Metiltransferasa 3A , Matriz Extracelular , Fibroblastos , Ratones Endogámicos C57BL , MicroARNs , Mitocondrias , Animales , MicroARNs/genética , MicroARNs/metabolismo , Curcumina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ADN Metiltransferasa 3A/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Humanos , Ratones , Masculino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Bleomicina , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Modelos Animales de Enfermedad
2.
J Phys Chem B ; 128(5): 1194-1204, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38287918

RESUMEN

In eukaryotic cell division, a series of events are organized to produce two daughter cells. The spindle elongation in anaphase B is essential for providing enough space to maintain cell size and distribute sister chromatids properly, which is associated with microtubules and microtubule-associated proteins such as kinesin-5 Eg5 and the Ase1-related protein, PRC1. The available experimental data indicated that after the start of anaphase B more PRC1 proteins can bind to the antiparallel microtubule pairs in the spindle but the excess amount of PRC1 proteins can lead to the failure of cell division, indicating that PRC1 proteins can regulate the spindle elongation in a concentration-dependent manner. However, the underlying mechanism of the PRC1 proteins regulating the spindle elongation has not been explained up to now. Here, we use a simplified model, where only the two important participants (kinesin-5 Eg5 motors and PRC1 proteins) are considered, to study the spindle elongation during anaphase B. We first show that only in the appropriate range of the PRC1 concentration can the spindle elongation complete properly. Furthermore, we explore the underlying mechanism of PRC1 as a regulator for spindle elongation.


Asunto(s)
Anafase , Cinesinas , Humanos , Cinesinas/metabolismo , Huso Acromático/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos
3.
World J Pediatr ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019382

RESUMEN

BACKGROUND: Prenatal bisphenol exposure has been reported to be associated with lower birth weight and obesity-related indicators in early childhood. These findings warrant an investigation of the relationship between prenatal bisphenol exposure and the dynamic growth of offspring. This study aimed to evaluate the relationship of maternal bisphenol concentration in urine with the body mass index (BMI) growth trajectory of children aged up to two years and to identify the critical exposure periods. METHODS: A total of 826 mother-offspring pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015. Maternal urine samples collected during the first, second, and third trimesters were analyzed for bisphenol A (BPA), bisphenol S, and bisphenol F (BPF) concentrations. Measurements of length and weight were taken at 0, 1, 3, 6, 8, 12, 18, and 24 months. Children's BMI was standardized using the World Health Organization reference, and group-based trajectory modeling was used to identify BMI growth trajectories. The associations between prenatal bisphenol exposure and BMI growth trajectory patterns were assessed using multinomial logistic regression models. RESULTS: The BMI growth trajectories of the 826 children were categorized into four patterns: low-stable (n = 134, 16.2%), low-increasing (n = 142, 17.2%), moderate-stable (n = 350, 42.4%), and moderate-increasing (n = 200, 24.2%). After adjusting for potential confounders, we observed that prenatal exposure to BPA during the second trimester [odds ratio (OR) = 2.20, 95% confidence interval (CI) = 1.09-4.43] and BPF during the third trimester (OR = 3.28, 95% CI = 1.55-6.95) at the highest quartile concentration were associated with an increased likelihood of the low-increasing BMI trajectory. Furthermore, in the subgroup analysis by infant sex, the positive association between the highest quartile of prenatal average urinary BPF concentration during the whole pregnancy and the low-increasing BMI trajectory was found only in girls (OR = 2.82, 95% CI = 1.04-7.68). CONCLUSION: Our study findings suggest that prenatal exposure to BPA and BPF (a commonly used substitute for BPA) is associated with BMI growth trajectories in offspring during the first two years, increasing the likelihood of the low-increasing pattern. Video Abstract (MP4 120033 kb).

4.
Clin Pharmacol Ther ; 114(6): 1274-1284, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37634125

RESUMEN

Immunogenicity is critical for biologics. However, reference biologics labeling documents do not necessarily mention immunogenicity impact, rendering the development of biosimilars more challenging. We aimed to investigate the comparative assessment of immunogenicity profiles between biosimilars and their respective reference biologics in the review reports of the biosimilar monoclonal antibody applications approved by the Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA) as of March 13, 2022, covering 22 applications approved between April 5, 2016, and December 17, 2021. The maximum differences in anti-drug antibody (ADA) and neutralizing antibody (NAb) incidences between biosimilars and reference products mostly fell within ± 15% (-13.6% to 12%) and ± 20% (-17.4% to 17.1%, except extreme values of -23.4% and 66.7%), respectively. In comparison with antineoplastic agents, more immunosuppressants had ADA-positive (11/11, 100.0% vs. 8/10, 80.0%)/NAb-positive (11/11, 100.0% vs. 3/10, 30.0%) subjects, and the distribution of the aforementioned incidence differences was wider. The investigated biosimilars with available data for analysis demonstrated a high degree of consistency with their reference products in terms of the impact on pharmacokinetic parameters. No increase in immunogenicity was found in available switching studies. Most (16/22, 72.7%) biosimilars were issued post-marketing requirements that were not directly related to immunogenicity concerns. The FDA considered the totality of evidence assessing clinical consequences of immunogenicity differences, if any. Additional information on titers and subgroup analysis may be warranted to elucidate the critical attributes of immunogenicity impact and to aid in forming cost-effective strategies for biosimilar development.


Asunto(s)
Antineoplásicos , Biosimilares Farmacéuticos , Estados Unidos , Humanos , Biosimilares Farmacéuticos/efectos adversos , Anticuerpos Monoclonales/efectos adversos , United States Food and Drug Administration , Aprobación de Drogas
5.
Carbohydr Polym ; 312: 120809, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059520

RESUMEN

This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.


Asunto(s)
Ácido Hialurónico , Streptococcus equi , Ácido Hialurónico/química , Temperatura , Streptococcus equi/genética , Streptococcus equi/metabolismo , Uridina Difosfato/metabolismo , Variación Genética
6.
Biol Direct ; 18(1): 9, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879344

RESUMEN

BACKGROUND: Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS: We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS: Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and ß-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION: MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.


Asunto(s)
Cardiopatías , Síndrome Metabólico , Animales , Ratones , Caveolas , Caveolina 1/genética , Miocitos Cardíacos , Síndrome Metabólico/etiología , Dieta Occidental , Células Endoteliales , Remodelación Ventricular , Lípidos
7.
Phytomedicine ; 110: 154597, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603340

RESUMEN

BACKGROUND: Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE: The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, ß-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS: Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/ß-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION: Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.


Asunto(s)
MicroARNs , Neoplasias de la Retina , Retinoblastoma , Animales , Ratones , Humanos , Masculino , Transición Epitelial-Mesenquimal/genética , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Cadherinas/metabolismo , Neoplasias de la Retina/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
8.
Small ; 18(5): e2106498, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921576

RESUMEN

Cell morphology and migration depend critically on the adhesions on the extracellular matrix (ECM), determined by the transmembrane protein integrins. The epithelial to mesenchymal transition (EMT) is a prominent transformation process in which adherent cells acquire a mesenchymal phenotype and a promoted migration. EMT plays important roles in embryonic development and cancer metastasis, and its hallmarks include the acquisition of front-back cell polarity and loss of cell-cell contact. However, how integrins dynamically regulate cell-ECM adhesions and cellular behaviors during EMT is still unclear. Using single-particle tracking of ß1-integrins labeled with quantum dots, the temporal-spatial on-membrane dynamics of integrins in the EMT of MCF10A cells is revealed. ß1-integrins exhibit significantly enhanced dynamics, which temporally behave more diffusive and less immobilized, and spatially become distributed asymmetrically with front regions being more dynamic. These dynamic alterations are shown to arise from microtubule remodeling in EMT. The results shed new light on the EMT mechanism from the cell-ECM adhesion perspective, and suggest that the enhanced integrin diffusion may represent as a new hallmark of EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Integrinas , Movimiento Celular , Células Epiteliales , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Transducción de Señal
9.
Biomedicines ; 9(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34680582

RESUMEN

The accumulation of unknown polymorphic composites in the endocardium damages the endocardial endothelium (EE). However, the composition and role of unknown polymorphic composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite deposition during endocardium damage and HF progression. Adult male Sprague-Dawley rats were divided into two HF groups-angiotensin II-induced HF and left anterior descending artery ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements in deposits were examined. HF progression reduced the expression of CD31 in the endocardium, impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocardial surface showed the accumulation of unknown polymorphic composites. In the animal HF model, especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N in the deposited composites were significantly higher than those of the other groups. The deposited composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was significantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT was accompanied by polymorphic composites of different shapes and elemental compositions, which further damage and deteriorate heart function.

10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638915

RESUMEN

Pulmonary artery hypertension (PAH) pathology involves extracellular matrix (ECM) remodeling in cardiac tissues, thus promoting cardiac fibrosis progression. miR-29a-3p reportedly inhibits lung progression and liver fibrosis by regulating ECM protein expression; however, its role in PAH-induced fibrosis remains unclear. In this study, we aimed to investigate the role of miR-29a-3p in cardiac fibrosis progression in PAH and its influence on ECM protein thrombospondin-2 (THBS2) expression. The diagnostic and prognostic values of miR-29a-3p and THBS2 in PAH were evaluated. The expressions and effects of miR-29a-3p and THBS2 were assessed in cell culture, monocrotaline-induced PAH mouse model, and patients with PAH. The levels of circulating miR-29a-3p and THBS2 in patients and mice with PAH decreased and increased, respectively. miR-29a-3p directly targets THBS2 and regulates THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis. The circulating levels of miR-29a-3p and THBS2 were correlated with PAH diagnostic parameters, suggesting their independent prognostic value. miR-29a-3p targeted THBS2 expression via a direct anti-fibrotic effect on PAH-induced cardiac fibrosis, indicating miR-29a-3p acts as a messenger with promising therapeutic effects.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Miocardio/patología , Hipertensión Arterial Pulmonar/genética , Trombospondinas/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Masculino , Ratones , MicroARNs/sangre , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/ultraestructura , Proteómica/métodos , Hipertensión Arterial Pulmonar/metabolismo , Trombospondinas/metabolismo , Adulto Joven
11.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807275

RESUMEN

High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in regulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipodia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phosphorylation and colocalization was determined using immunostaining and co-immunoprecipitation assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution), promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphorylation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions were positively correlated and exhibited poor prognosis and survival in patients with lung cancer. Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.


Asunto(s)
Dinaminas/metabolismo , Proteína HMGB1/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Dinaminas/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Proteínas HMGB/metabolismo , Proteína HMGB1/fisiología , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones SCID , Microscopía Confocal/métodos , Mitocondrias/genética , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Fosforilación , Seudópodos/metabolismo
12.
FASEB J ; 35(1): e21200, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33341997

RESUMEN

Thrombospondin-1 (TSP1) is involved in corneal wound healing caused by chemical injury. Herein, we examined the effects of TSP1 on hypoxia-induced damages and wound-healing activity in human corneal epithelial (HCE) cells. Exosomal protein expression was determined using liquid chromatography-tandem mass spectrometry, and HCE cell migration and motility were examined through wound-healing assay and time-lapse microscopy. Reestablishment of cell junctions by TSP1 was assessed through confocal microscopy and 3D image reconstruction. Our results show that CoCl2 -induced hypoxia promoted HCE cell death by paraptosis. TSP1 protected these cells against paraptosis by attenuating mitochondrial membrane potential depletion, swelling and dilation of endoplasmic reticulum and mitochondria, and mitochondrial fission. Exosomes isolated from HCE cells treated with TSP1 contained wound healing-associated proteins that were taken up by HCE cells to promote tissue remodeling and repair. TSP1 protected HCE cells against hypoxia-induced damages and inhibited paraptosis progression by promoting cell migration, cell-cell adhesion, and extracellular matrix remodeling. These findings indicate that TSP1 ameliorates hypoxia-induced paraptosis in HCE cells and promotes wound healing and remodeling by regulating exosomal protein expression. TSP1 may, therefore, play important roles in the treatment of hypoxia-associated corneal diseases.


Asunto(s)
Células Epiteliales/metabolismo , Epitelio Corneal/metabolismo , Exosomas/metabolismo , Trombospondina 1/metabolismo , Cicatrización de Heridas , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Cobalto/farmacología , Retículo Endoplásmico/metabolismo , Células Epiteliales/patología , Epitelio Corneal/patología , Exosomas/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/metabolismo
13.
Mol Med Rep ; 20(5): 4226-4234, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31545471

RESUMEN

Damage to the blood­brain barrier (BBB) resulting from systemic inflammation caused by surgical trauma is associated with cognitive dysfunction, and individuals with hyperlipidemia are more sensitive to such impairment. The present study was designed to ascertain whether dexmedetomidine (Dex) treatment could reduce the incidence of cognitive dysfunction following surgery in a hyperlipidemia model. Hyperlipidemia was induced in Sprague­Dawley rats (male, 6­7 months old) by consuming a high­fat diet, and rats were divided into three groups (n=10 each) and underwent: exploratory laparotomy to introduce surgical trauma (surgery group), laparotomy and Dex treatment (surgery+Dex group), or sham surgery (sham group). Learning, memory and exploration behavior were assessed using the Morris water maze. Concentrations of tumor necrosis factor (TNF)­α and interleukin (IL)­1ß, were determined by enzyme­linked immunosorbent assay. BBB permeability was assessed by Evans blue staining. Relative major facilitator superfamily domain­containing protein 2 (Mfsd2a) mRNA expression was determined by quantitative PCR. In the Morris water maze test, the time and distance ratio for the surgery group was significantly lower than those of the sham and surgery+Dex groups (P<0.05). In addition, the TNF­α concentrations in the sham and surgery+Dex groups were lower than that in the surgery group (P<0.05 on days 1 and 3). Evans Blue staining was increased in the surgery group on day 1 (P<0.01). Mfsd2a mRNA expression was higher in the sham and surgery+Dex groups compared with that noted in the surgery group (P<0.05). In conclusion, Dex treatment decreased the incidence of cognitive dysfunction following surgical trauma in a hyperlipidemia rat model. We demonstrated that Dex stabilized BBB integrity through increased Mfsd2a gene expression.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Dieta Alta en Grasa , Hiperlipidemias/complicaciones , Proteínas de Transporte de Membrana/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Transducción de Señal , Animales , Dexmedetomidina/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hiperlipidemias/dietoterapia , Proteínas de Transporte de Membrana/genética , Permeabilidad , Complicaciones Cognitivas Postoperatorias/prevención & control , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
14.
Br J Pharmacol ; 176(19): 3791-3804, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31265743

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial dysfunction plays a role in the progression of cardiovascular diseases including heart failure. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins), which inhibit ROS synthesis, show cardioprotective effects in chronic heart failure. However, the beneficial role of statins in mitochondrial protection in heart failure remains unclear. EXPERIMENTAL APPROACH: Rats were treated with angiotensin II (1.5 mg·kg-1 ·day-1 ) or co-administered simvastatin (oral, 10 mg·kg-1 ) for 14 days; and then administration was stopped for the following 14 days. Cardiac structure/function was examined by wheat germ agglutinin staining and echocardiography. Mitochondrial morphology and the numbers of lipid droplets, lysosomes, autophagosomes, and mitophagosomes were determined by transmission electron microscopy. Human cardiomyocytes were stimulated, and intracellular ROS and mitochondrial membrane potential (ΔΨm ) changes were measured by flow cytometry and JC-1 staining, respectively. Autophagy and mitophagy-related and mitochondria-regulated apoptotic proteins were identified by immunohistochemistry and western blotting. KEY RESULTS: Simvastatin significantly reduced ROS production and attenuated the disruption of ΔΨm . Simvastatin induced the accumulation of lipid droplets to provide energy for maintaining mitochondrial function, promoted autophagy and mitophagy, and inhibited mitochondria-mediated apoptosis. These findings suggest that mitochondrial protection mediated by simvastatin plays a therapeutic role in heart failure prevention by modulating antioxidant status and promoting energy supplies for autophagy and mitophagy to inhibit mitochondrial damage and cardiomyocyte apoptosis. CONCLUSION AND IMPLICATIONS: Mitochondria play a key role in mediating heart failure progression. Simvastatin attenuated heart failure, induced by angiotensin II, via mitochondrial protection and might provide a new therapy to prevent heart failure.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias/efectos de los fármacos , Simvastatina/farmacología , Angiotensina II , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Simvastatina/administración & dosificación
15.
J Clin Med ; 8(6)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167519

RESUMEN

Exosome-mediated communication within the cardiac microenvironment is associated with cardiac fibrosis. Simvastatin (SIM), a potent statin, protects against cardiac fibrosis, but its mechanism of action is unclear. We investigated the inhibitory effects and underlying mechanism of simvastatin in cardiac fibrosis, by regulating exosome-mediated communication. Male Sprague-Dawley rats were treated with angiotensin (Ang) II alone, or with SIM for 28 d. Cardiac fibrosis, expressions of fibrosis-associated proteins and mRNAs, and collagen fiber arrangement and deposition were examined. Protein expressions in exosomes isolated from Ang II-treated cardiomyocytes (CMs) were evaluated using nano-ultra-performance liquid chromatographic system, combined with tandem mass spectrometry. Transformation of fibroblasts to myofibroblasts was evaluated using scanning electron and confocal microscopy, and migration assays. Our results showed that SIM attenuated in vivo expression of collagen and collagen-associated protein, as well as collagen deposition, and cardiac fibrosis. The statin also upregulated decorin and downregulated periostin in CM-derived exosomes. Furthermore, it suppressed Ang II-induced transformation of fibroblast to myofibroblast, as well as fibroblast migration. Exosome-mediated cell-cell communication within the cardiac tissue critically regulated cardiac fibrosis. Specifically, SIM regulated the release of CM exosomes, and attenuated Ang II-induced cardiac fibrosis, highlighting its potential as a novel therapy for cardiac fibrosis.

16.
Sci Rep ; 9(1): 7425, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092844

RESUMEN

Recent data suggest that patients with a basal/stem-like bladder cancer (BC) subtype tend to have metastatic disease, but this is unconfirmed. Here we report the identification of murine MB49 cell line sub-clones with stem-like characteristics in culture. Subcutaneous implantation of S2 and S4 MB49 sub-clones into immunocompetent mice resulted in lung metastases in 50% and 80% of mice respectively, whereas none of the mice implanted with the parental cells developed metastasis. Gene profiling of cells cultured from S2 and S4 primary and metastatic tumors revealed that a panel of genes with basal/stem-like/EMT properties is amplified during metastatic progression. Among them, ITGB1, TWIST1 and KRT6B are consistently up-regulated in metastatic tumors of both MB49 sub-clones. To evaluate clinical relevance, we examined these genes in a human public dataset and found that ITGB1 and KRT6B expression in BC patient tumor samples are positively correlated with tumor grade. Likewise, the expression levels of these three genes are correlated with worse clinical outcomes. This MB49 BC metastatic pre-clinical model provides a unique opportunity to validate and recapitulate results discovered in patient studies and to pursue future mechanistic therapeutic interventions for BC metastasis.


Asunto(s)
Neoplasias de la Vejiga Urinaria/patología , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica/genética , Genes Relacionados con las Neoplasias , Integrina beta1/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 1 Relacionada con Twist/genética , Urotelio/patología
17.
Foodborne Pathog Dis ; 16(9): 648-651, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099593

RESUMEN

The aim of this study was to gain insight into the knowledge of, attitude toward, and practical experience with listeriosis among medical staff. In two hospitals in Fangshan, Beijing, 410 medical staff members were randomly selected using a random sampling method. Each selected staff member was invited to participate in a standardized questionnaire interview. In total, 397 valid questionnaires were collected. With regard to the staff members' general knowledge of listeriosis, they answered 65.96% of the items correctly. The knowledge scores among obstetricians and gynecologists were higher than those of other clinical doctors (p < 0.05); however, obstetricians and gynecologists were less knowledgeable about which drugs are effective against listeriosis than the other doctors (p = 0.007). The percentage of participants with a positive attitude about preventing listeriosis was 96.47%, the percentage with practice formation was 52.39%. The medical staff's mean score for knowledge of listeriosis was 4.61 ± 1.83. The mean score for attitude toward listeriosis was 9.71 ± 1.31. There was a significant association between attitude and knowledge of listeriosis (r = 0.221, p < 0.001). Medical staff obtained a mean score of 2.10 ± 1.07 for the practice formation. There was a significant association between practice formation and knowledge of listeriosis (r = 0.502, p < 0.001). The mean knowledge-attitude-practice (KAP) score for listeriosis among medical staff was 16.41 ± 3.19. The KAP scores were significantly correlated with age (r = 0.129, p = 0.011), occupation (r = -0.103, p = 0.041), department (r = -0.168, p = 0.001), and professional title (r = 0.166, p = 0.001). To improve medical outcomes and foodborne disease surveillance, medical staff should receive more training on listeriosis and the content of the training should be adjusted.


Asunto(s)
Enfermedades Transmitidas por los Alimentos/prevención & control , Conocimientos, Actitudes y Práctica en Salud , Listeriosis/prevención & control , Cuerpo Médico , Adulto , Anciano , Beijing , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven
18.
Cancer Lett ; 442: 287-298, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439539

RESUMEN

Exosomes are implicated in cancer cell development, migration and invasion. Pigment epithelium-derived factor (PEDF) is a secreted anticancer protein that can regulate lung cancer progression; however, the role of PEDF in non-small cell lung cancer (NSCLC), including metastasis and cancer cell-derived exosome secretion, is unclear. In this study, we analyzed the effects of PEDF on exosome-mediated migration, invasion, and tumorigenicity of cultured NSCLC cells. The results showed that PEDF overexpression significantly reduced NSCLC invasion and migration, while inducing cell aggregation, whereas PEDF knockdown had the opposite effects. Exosomes from NSCLC cells treated with recombinant PEDF had a significantly reduced ability to promote cancer cell motility, migration, and invasion compared to exosomes from untreated cells. Exosomes from PEDF-treated cells contained thrombospondin 1 (THBS1), which inhibited cytoskeletal remodeling and exosome-induced lung cancer cell motility, migration, and invasion. Furthermore, PEDF-overexpressing NSCLC cells formed smaller xenograft tumors with higher THBS1 expression compared to control tumors. Our findings indicate that PEDF decreases the metastatic potential of NSCLC cells through regulation of THBS1 release in cancer cell-derived exosomes, thus uncovering a new mechanism of lung cancer progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Exosomas/metabolismo , Proteínas del Ojo/metabolismo , Neoplasias Pulmonares/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Trombospondina 1/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Exosomas/genética , Exosomas/patología , Proteínas del Ojo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones SCID , Invasividad Neoplásica , Factores de Crecimiento Nervioso/genética , Serpinas/genética , Transducción de Señal , Trombospondina 1/genética , Carga Tumoral , Regulación hacia Arriba
19.
Proc Natl Acad Sci U S A ; 115(48): 12118-12123, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30429318

RESUMEN

Intracellular transport of cellular proteins and organelles is critical for establishing and maintaining intracellular organization and cell physiology. Apoptosis is a process of programmed cell death with dramatic changes in cell morphology and organization, during which signaling molecules are transported between different organelles within the cells. However, how the intracellular transport changes in cells undergoing apoptosis remains unknown. Here, we study the dynamics of intracellular transport by using the single-particle tracking method and find that both directed and diffusive motions of endocytic vesicles are accelerated in early apoptotic cells. With careful elimination of other factors involved in the intracellular transport, the reason for the acceleration is attributed to the elevation of adenosine triphosphate (ATP) concentration. More importantly, we show that the accelerated intracellular transport is critical for apoptosis, and apoptosis is delayed when the dynamics of intracellular transport is regulated back to the normal level. Our results demonstrate the important role of transport dynamics in apoptosis and shed light on the apoptosis mechanism from a physical perspective.


Asunto(s)
Apoptosis , Células/metabolismo , Citosol/metabolismo , Células A549 , Adenosina Trifosfato/metabolismo , Transporte Biológico , Células/citología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos
20.
Int J Mol Sci ; 19(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231589

RESUMEN

Tumor-derived extracellular vesicles (TEVs) are membrane-bound, nanosized vesicles released by cancer cells and taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. In this report, we summarize the pivotal roles of TEVs involved in bladder cancer (BC) development, progression and treatment resistance through transferring their bioactive cargos, including proteins and nucleic acids. We also report on the molecular profiling of TEV cargos derived from urine and blood of BC patients as non-invasive disease biomarkers. The current hurdles in EV research and plausible solutions are discussed.


Asunto(s)
Vesículas Extracelulares/patología , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Progresión de la Enfermedad , Humanos , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...