Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485340

RESUMEN

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Asunto(s)
Hemo-Oxigenasa 1 , Microglía , Animales , Ratones , Hemo-Oxigenasa 1/metabolismo , Microglía/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción de Prevención , Citocinas/metabolismo , Interleucina-6/metabolismo , Conducta Social , Tolerancia Inmunológica , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
2.
Diagnostics (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38472940

RESUMEN

Bladder cancer (BCa) is a significant health issue and poses a healthcare burden on patients, highlighting the importance of an effective detection method. Here, we developed a urine DNA methylation diagnostic panel for distinguishing between BCa and non-BCa. In the discovery stage, an analysis of the TCGA database was conducted to identify BCa-specific DNA hypermethylation markers. In the validation phase, DNA methylation levels of urine samples were measured with real-time quantitative methylation-specific PCR (qMSP). Comparative analysis of the methylation levels between BCa and non-BCa, along with the receiver operating characteristic (ROC) analyses with machine learning algorithms (logistic regression and decision tree methods) were conducted to develop practical diagnostic panels. The performance evaluation of the panel shows that the individual biomarkers of ZNF671, OTX1, and IRF8 achieved AUCs of 0.86, 0.82, and 0.81, respectively, while the combined yielded an AUC of 0.91. The diagnostic panel using the decision tree algorithm attained an accuracy, sensitivity, and specificity of 82.6%, 75.0%, and 90.9%, respectively. Our results show that the urine-based DNA methylation diagnostic panel provides a sensitive and specific method for detecting and stratifying BCa, showing promise as a standard test that could enhance the diagnosis and prognosis of BCa in clinical settings.

3.
Nutrients ; 15(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068712

RESUMEN

We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.


Asunto(s)
Antígeno B7-H1 , Glioblastoma , Humanos , Antígeno B7-H1/metabolismo , Glioblastoma/metabolismo , Factor de Necrosis Tumoral alfa , Macrófagos/metabolismo , Monocitos/metabolismo , Línea Celular Tumoral
4.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627528

RESUMEN

Bradykinin is a small active peptide and is considered an inflammatory mediator in several pathological conditions. Bradykinin exerts its effects by coupling to its receptors, including bradykinin B1 (B1R) and bradykinin B2. B1R has been implicated in the development of various cancers. Our previous study reported that B1R promoted glioblastoma (GBM) development by supporting the migration and invasion of GBM cells. However, the mechanisms underlying the effects of B1R on tumor-associated macrophages (TAMs) and GBM progression remain unknown. Accordingly, to explore the regulatory effects of B1R overexpression (OE) in GBM on tumor-associated immune cells and tumor progression, we constructed a B1R wild-type plasmid and developed a B1R OE model. The results reveal that B1R OE in GBM promoted the expression of ICAM-1 and VCAM-1-cell adhesion molecules-in GBM. Moreover, B1R OE enhanced GBM cell migration ability and monocyte attachment. B1R also regulated the production of the protumorigenic cytokines and chemokines IL-6, IL-8, CXCL11, and CCL5 in GBM, which contributed to tumor progression. We additionally noted that B1R OE in GBM increased the expression of CD68 in TAMs. Furthermore, B1R OE reduced the level of reactive oxygen species in GBM cells by upregulating heme oxygenase-1, an endogenous antioxidant protein, thereby protecting GBM cells from oxidative stress. Notably, B1R OE upregulated the expression of programmed death-ligand 1 in both GBM cells and macrophages, thus providing resistance against T-cell response. B1R OE in GBM also promoted tumor growth and reduced survival rates in an intracranial xenograft mouse model. These results indicate that B1R expression in GBM promotes TAM activity and modulates GBM progression. Therefore, B1R could be an effective target for therapeutic methods in GBM.

5.
Medicine (Baltimore) ; 102(26): e34139, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390234

RESUMEN

RATIONALE: Eosinophilic granuloma (EG) - the most common form of Langerhans cell histiocytosis - occurs rarely, and manifestations with only rib and clavicle involvement are extremely rare. EG symptoms often include pain, swelling, and soft tissue mass. The clinical diagnosis of bone EG is complex, and the differential diagnosis includes Ewing sarcoma, tuberculosis, multiple myeloma, lymphoma, primary bone malignancy, and other osteolytic lesions. PATIENTS CONCERN: The patient was an 11-year-old female who found a subcutaneous mass at the junction of the right clavicle and sternum 2 days before presenting at the clinic without apparent triggers. Initially, we considered a subcutaneous cyst or inflammatory mass. Color ultrasound and computed tomography examination revealed osteomyelitis. Finally, the patient was diagnosed with EG after a pathological tissue biopsy, and the child recovered after surgery and anti-infective treatment. DIAGNOSIS: The patient underwent surgery to remove the tumor at a specialist hospital and was diagnosed with EG by pathological examination. INTERVENTION: The patient went to a specialist hospital for surgery to remove the mass and underwent anti-infective treatment. OUTCOMES: The patient recovered after surgical resection and antibiotic treatment. LESSONS: In this report, we emphasize that the clinical presentation of EG in children is not specific. Furthermore, examining age, history, presence of symptoms, and the number of sites is essential to make a correct diagnosis, and a histological examination is necessary to confirm the diagnosis.


Asunto(s)
Granuloma Eosinófilo , Niño , Femenino , Humanos , Granuloma Eosinófilo/diagnóstico , Granuloma Eosinófilo/cirugía , Clavícula/diagnóstico por imagen , Clavícula/cirugía , Pueblos del Este de Asia , Diagnóstico Diferencial , Instituciones de Atención Ambulatoria
6.
Cancers (Basel) ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077877

RESUMEN

BACKGROUND: We describe a DNA methylation assay, named MPap test, using cervical scraping as an alternative technique for endometrial cancer detection. METHODS: A multicenter hospital-based, two-stage validation study was conducted to validate the cancer detection performance of the MPap test. The MPap value was determined from the DNA methylation status of two genes (BHLHE22, CDO1) and combined with two other clinical variables (age, BMI). The cutoff threshold of the MPap value was established in stage 1 and validated in stage 2. A total of 592 women with abnormal uterine bleeding were enrolled from five medical centers throughout Taiwan. RESULTS: In stage 1, the sensitivity, specificity, and positive and negative predictive values of the MPap test for detecting endometrial cancer were 92.9%, 71.5%, 39.8%, and 98.0%, respectively. These values were validated in stage 2, being 92.5%, 73.8%, 40.2%, and 98.1%. Moreover, MPap outperformed transvaginal ultrasound in sensitivity and negative predictive values for detecting endometrial cancer. When we applied the algorithm for triage of endometrial cancer detection by MPap in the Taiwan National Health Insurance dataset, we found that it may reduce invasive procedures by 69~73%. CONCLUSIONS: MPap may provide a feasible alternative for endometrial cancer detection and can be considered as a triage test to reduce unnecessary invasive procedures.

7.
Am J Cancer Res ; 12(7): 3333-3346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968340

RESUMEN

Disulfiram is an FDA-approved drug that has been used to treat alcoholism and has demonstrated a wide range of anti-cancer, anti-bacterial, and anti-viral effects. In the global COVID-19 pandemic, there is an urgent need for effective therapeutics and vaccine development. According to recent studies, disulfiram can act as a potent SARS-CoV-2 replication inhibitor by targeting multiple SARS-CoV-2 non-structural proteins to inhibit viral polyprotein cleavage and RNA replication. Currently, disulfiram is under evaluation in phase II clinical trials to treat COVID-19. With more and more variants of the SARS-CoV-2 worldwide, it becomes critical to know whether disulfiram can also inhibit viral entry into host cells for various variants and replication inhibition. Here, molecular and cellular biology assays demonstrated that disulfiram could interrupt viral spike protein binding with its receptor ACE2. By using the viral pseudo-particles (Vpps) of SARS-CoV-2, disulfiram also showed the potent activity to block viral entry in a cell-based assay against Vpps of different SARS-CoV-2 variants. We further established a live virus model system to support the anti-viral entry activity of disulfiram with the SARS-CoV-2 virus. Molecular docking revealed how disulfiram hindered the binding between the ACE2 and wild-type or mutated spike proteins. Thus, our results indicate that disulfiram has the capability to block viral entry activity of different SARS-CoV-2 variants. Together with its known anti-replication of SARS-CoV-2, disulfiram may serve as an effective therapy against different SARS-CoV-2 variants.

8.
J Dent Sci ; 17(3): 1212-1216, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784133

RESUMEN

Background/purpose: Bulk-fill resin-based composites (RBCs) are a new class of restorative materials, and polymerization shrinkage (PS) is concerned due to their single increment up to 4 mm. The aim of this study was to evaluate the PS and shrinkage stress (SS) of bulk-fill RBCs in vitro. Materials and methods: Three bulk-fill RBCs and three conventional non-bulk-fill RBCs were selected. The PS was determined with Acuvol volumetric shrinkage analyzer by calculating the specimen volume variation before and after light irradiation. The SS was investigated using universal testing machine method with a polymethyl methacrylate rod as a bonding substrate. The force generated during the polymerization process was detected by a load cell linked to a computer. SS was calculated by dividing the maximum stress force by the area of the rod. Results: The mean PS of various RBCs ranged from 1.72% to 2.13%. All PS results of bulk-fill RBCs were comparable to their conventional counterparts. Sonicfill 2 (SF2) and Harmonize (HM) showed the lowest PS (p < 0.05; Tukey HSD test). Medians of SS results ranged from 0.55 MPa to 0.67 MPa. All SSs of bulk-fill RBCs were comparable to their conventional counterparts. SF2 showed significantly lower SS than Tetric N-Ceram (TN) and Tetric N-Ceram Bulk Fill (TNB) (p < 0.0083; post hoc comparisons with Bonferroni adjustments). A moderate, positive correlation was observed between PS and SS with Pearson's correlation (r = 0.446, p = 0.013). Conclusion: Both PS and SS are material dependent. A moderate, positive correlation between PS and SS is found with new bulk-fill RBCs and their conventional counterparts.

9.
Cancers (Basel) ; 13(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34503167

RESUMEN

A previous study from our group reported that monocyte adhesion to glioblastoma (GBM) promoted tumor growth and invasion activity and increased tumor-associated macrophages (TAMs) proliferation and inflammatory mediator secretion as well. The present study showed that prescribed psychotropic medicine paliperidone reduced GBM growth and immune checkpoint protein programmed death ligand (PD-L)1 expression and increased survival in an intracranial xenograft mouse model. An analysis of the database of patients with glioma showed that the levels of PD-L1 and dopamine receptor D (DRD)2 were higher in the GBM group than in the low grade astrocytoma and non-tumor groups. In addition, GFP expressing GBM (GBM-GFP) cells co-cultured with monocytes-differentiated macrophage enhanced PD-L1 expression in GBM cells. The enhancement of PD-L1 in GBM was antagonized by paliperidone and risperidone as well as DRD2 selective inhibitor L741426. The expression of CD206 (M2 phenotype marker) was observed to be markedly increased in bone marrow-derived macrophages (BMDMs) co-cultured with GBM. Importantly, treatment with paliperidone effectively decreased CD206 and also dramatically increased CD80 (M1 phenotype marker) in BMDMs. We have previously established a PD-L1 GBM-GFP cell line that stably expresses PD-L1. Experiments showed that the expressions of CD206 was increased and CD80 was mildly decreased in the BMDMs co-cultured with PD-L1 GBM-GFP cells. On the other hands, knockdown of DRD2 expression in GBM cells dramatically decreased the expression of CD206 but markedly increased CD80 expressions in BMDMs. The present study suggests that DRD2 may be involved in regulating the PD-L1 expression in GBM and the microenvironment of GBM. Our results provide a valuable therapeutic strategy and indicate that treatments combining DRD2 antagonist paliperidone with standard immunotherapy may be beneficial for GBM treatment.

10.
Environ Toxicol ; 36(12): 2551-2561, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34520103

RESUMEN

Cancer and its associated conditions have significant impacts on public health at many levels worldwide, and cancer is the leading cause of death among adults. Peroxisome proliferator-activated receptor α (PPARα)-specific agonists, fibrates, have been approved by the Food and Drug Administration for managing hyperlipidemia. PPARα-specific agonists exert anti-cancer effects in many human cancer types, including glioblastoma (GBM). Recently, we have reported that the hypoxic state in GBM stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), thus contributing to tumor escape from immune surveillance by activating the expression of the pH-regulating protein carbonic anhydrase IX (CA9). In this study, we aimed to study the regulatory effects of the PPARα agonist fibrate on the regulation of HIF-1α expression and its downstream target protein in GBM. Our findings showed that fenofibrate is the high potency compound among the various fibrates that inhibit hypoxia-induced HIF-1α and CA9 expression in GBM. Moreover, fenofibrate-inhibited HIF-1α expression is mediated by HO-1 activation in GBM cells through the AMP-activated protein kinase (AMPK) pathway. In addition, fenofibrate-enhanced HO-1 upregulation activates SIRT1 and leads to subsequent accumulation of SIRT1 in the nucleus, which further promotes HIF-1α deacetylation and inhibits CA9 expression. Using a protein synthesis inhibitor, cycloheximide, we also observed that fenofibrate inhibited HIF-1α protein synthesis. In addition, the administration of the proteasome inhibitor MG132 showed that fenofibrate promoted HIF-1α protein degradation in GBM. Hence, our results indicate that fenofibrate is a useful anti-GBM agent that modulates hypoxia-induced HIF-1α expression through multiple cellular pathways.


Asunto(s)
Anhidrasas Carbónicas , Fenofibrato , Glioblastoma , Proteínas Quinasas Activadas por AMP/genética , Fenofibrato/farmacología , Glioblastoma/genética , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Sirtuina 1
11.
Physiol Mol Biol Plants ; 27(6): 1311-1321, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34177149

RESUMEN

Aluminum (Al) toxicity is a major limitation to crop production in countries where acidic soil is abundant. In China, soybean production is constrained by Al stress-induced toxicity. As such, there is growing interest to develop Al-resistant varieties. In the present study, we sought to determine potential genes, functions and pathways for screening and breeding of Al-resistant varieties of soybean. First, we mined the E-GEOD-18517 dataset and identified 729 differentially expressed genes (DEGs) between untreated and Al-treated groups. Next, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathways enrichment analysis and observed that most of the screened genes were mainly enriched in defense response, plasma membrane and molecular transducer activity. They were also enriched in three important pathways, the phenylpropanoid biosynthesis, plant-pathogen interaction, and cutin, suberine and wax biosynthesis. Utilizing weighted gene co-expression network analysis of 815 DEGs screened by Venn diagram, we identified DEGs that were the most disparate between treated and untreated groups. LOC100793667 (probable protein phosphatase 2C 60, GLYMA_17G223800), LOC100780576 (ethylene-responsive transcription factor 1B, GLYMA_02G006200), and LOC100785578 (protein ESKIMO 1, GLYMA_02G258000) were the most differentially expressed, which were consistent with the qRT-PCR results. As these genes are known to participate in essential functions, such as cell junction and phenylpropanoid biosynthesis, these genes may be important for breeding Al-resistant varieties. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01018-x.

12.
Eur J Pharmacol ; 905: 174216, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34058204

RESUMEN

Glioblastoma (GBM) is the most common and lethal brain tumor with high inflammation. GBM cells infiltrate microglia and macrophages and are surrounded by pro-inflammatory cytokines. Interleukin (IL)-1ß, which is abundantly expressed in the tumor microenvironment, is involved in tumor progression. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mediate cell-cell interactions, and these cell adhesion molecules (CAMs) can be regulated by cytokines in immune cells or cancer cells in the inflammatory tumor microenvironment. In this study, we found that ICAM-1 and VCAM-1 expression was induced when GBM cells were treated with IL-1ß, and that adhesive interaction between monocytes and GBM cells increased accordingly. The levels of soluble CAMs (sICAM-1 and sVCAM-1) were also increased in the supernatants induced by IL-1ß. Furthermore, the conditioned media contained sICAM-1 and sVCAM-1, which further promoted IL-6 and CCL2 expression in differentiated macrophages. IL-1ß downregulated Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) in GBM. The expression of ICAM-1 and VCAM-1 was regulated by p38, AKT, and NF-κB signaling pathways, which were modulated by SHP-1 signaling. The present study suggests that IL-1ß-induced protein expression of ICAM-1 and VCAM-1 in GBM may modulate the adhesive interaction between GBM and monocytes. In addition, IL-1ß also induced the soluble form of ICAM-1 and VCAM-1 in GBM, which plays a key role in the regulation of tumor-associated monocyte/macrophage polarization.


Asunto(s)
Glioblastoma/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1beta/farmacología , Monocitos/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Molécula 1 de Adhesión Intercelular/genética , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/genética , eIF-2 Quinasa/metabolismo
13.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823915

RESUMEN

Carbonic anhydrases (CAs) are acid-base regulatory proteins that modulate a variety of physiological functions. Recent findings have shown that CAIX is particularly upregulated in glioblastoma multiforme (GBM) and is associated with a poor patient outcome and survival rate. An analysis of the GSE4290 dataset of patients with gliomas showed that CAIX was highly expressed in GBM and was negatively associated with prognosis. The expression of CAIX under hypoxic conditions in GBM significantly increased in protein, mRNA, and transcriptional activity. Importantly, CAIX upregulation also regulated GBM motility, monocyte adhesion to GBM, and the polarization of tumor-associated monocytes/macrophages (TAM). Furthermore, the overexpression of CAIX was observed in intracranial GBM cells. Additionally, epidermal growth factor receptor/signal transducer and activator of transcription 3 regulated CAIX expression under hypoxic conditions by affecting the stability of hypoxia-inducible factor 1α. In contrast, the knockdown of CAIX dramatically abrogated the change in GBM motility and monocyte adhesion to GBM under hypoxic conditions. Our results provide a comprehensive understanding of the mechanisms of CAIX in the GBM microenvironment. Hence, novel therapeutic targets of GBM progression are possibly developed.


Asunto(s)
Anhidrasa Carbónica IX/metabolismo , Movimiento Celular , Receptores ErbB/metabolismo , Glioblastoma/enzimología , Glioblastoma/patología , Factor de Transcripción STAT3/metabolismo , Hipoxia Tumoral , Macrófagos Asociados a Tumores/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Adhesión Celular , Línea Celular Tumoral , Polaridad Celular , Humanos , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Monocitos/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores/enzimología
14.
Psychoneuroendocrinology ; 120: 104800, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32688147

RESUMEN

Prior studies suggest that individual differences in stress responses contribute to the pathogenesis of neuropsychiatric disorders. In the present study, we investigated the role of small ubiquitin-like modifier (SUMO) E3 ligase protein inhibitor of activated STAT1 (PIAS1) in mediating stress responses to chronic social defeat stress (CSDS). We found that mRNA and protein levels of PIAS 1 were decreased in the hippocampus of high-susceptibility (HS) mice but not in low-susceptibility (LS) mice after CSDS. Local overexpression of PIAS1 in the hippocampus followed by CSDS exposure promoted stress resilience by attenuating social avoidance and improving anxiety-like behaviors. Viral-mediated gene transfer to generate a conditional knockdown of PIAS1 in the hippocampus promoted social avoidance and stress vulnerability after subthreshold microdefeat. HS mice displayed decreased levels of glucocorticoid receptor (GR) expression, and GR SUMOylation in the hippocampus was associated with stress vulnerability. Furthermore, cytokine/chemokine levels were changed predominantly in the hippocampus of HS mice. These results suggest that hippocampal PIAS1 plays a role in the regulation of stress susceptibility by post-translational modification of GRs.


Asunto(s)
Proteínas Inhibidoras de STAT Activados/metabolismo , Estrés Psicológico/metabolismo , Animales , Biomarcadores , Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/fisiología , Receptores de Glucocorticoides/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo
15.
Cancers (Basel) ; 12(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32045997

RESUMEN

Glioblastoma (GBM) is characterized by severe hypoxic and acidic stress in an abnormal microenvironment. Monocarboxylate transporter (MCT)4, a pH-regulating protein, plays an important role in pH homeostasis of the glycolytic metabolic pathways in cancer cells. The present study showed that GBM exposure to hypoxic conditions increased MCT4 expression. We further analyzed the glioma patient database and found that MCT4 was significantly overexpressed in patients with GBM, and the MCT4 levels positively correlated with the clinico-pathological grades of gliomas. We further found that MCT4 knockdown abolished the hypoxia-enhanced of GBM cell motility and monocyte adhesion. However, the overexpression of MCT4 promoted GBM cell migration and monocyte adhesion activity. Our results also revealed that MCT4-regulated GBM cell motility and monocyte adhesion are mediated by activation of the serine/threonine-specific protein kinase (AKT), focal adhesion kinase (FAK), and epidermal growth factor receptor (EGFR) signaling pathways. Moreover, hypoxia mediated the acetylated signal transducer and activator of transcription (STAT)3 expression and regulated the transcriptional activity of hypoxia inducible factor (HIF)-1α in GBM cell lines. In a GBM mouse model, MCT4 was significantly increased in the tumor necrotic tissues. These findings raise the possibility for the development of novel therapeutic strategies targeting MCT4.

16.
Plant Physiol Biochem ; 147: 215-222, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31869734

RESUMEN

Ethylene-response factor (ERF) proteins are members of a transcription factor family involved in plant growth and environmental stress responses, but the biological functions of ERF members in adzuki bean (Vigna angularis var. angularis) remain unknown. In addition, it is unclear whether these proteins have a role in regulating responses to abiotic stressors. Here, we identified 47 ERF genes by analyzing the adzuki bean genome. Whole-transcriptome analyses of plants under saline-alkaline stress suggested that the expression of 13 ERF genes was induced in response to saline-alkaline stress. Analysis of the cis-acting elements showed that the promoters of these saline-alkaline stress-inducible ERF genes contained LTRs, DREs, MYBs, ABREs, MYCs, CGTCA-, and TGACG-motifs, which are involved in abiotic stress responses. The expression of VaERF3 was induced by NaHCO3, polyethylene glycol 6000, NaCl, and ABA (abscisic acid), as determined by qRT-PCR. Overexpression of VaERF3 in transgenic Arabidopsis resulted in higher levels of proline accumulation and lower malondialdehyde and reactive oxygen species contents in plants grown under saline-alkaline stress conditions. Moreover, VaERF3 encoded a nuclear-localized transcriptional activator that promoted the expression of stress-responsive genes. Collectively, these results are of great significance in elucidating the mechanisms of saline-alkaline stress responses in adzuki bean.


Asunto(s)
Factores de Terminación de Péptidos , Proteínas de Plantas , Estrés Fisiológico , Vigna , Ácido Abscísico/farmacología , Arabidopsis/genética , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polietilenglicoles/farmacología , Bicarbonato de Sodio/farmacología , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Vigna/genética , Vigna/metabolismo
17.
Nutrients ; 11(6)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207928

RESUMEN

Natural products have historically been regarded as an important resource of therapeutic agents. Resveratrol and melatonin have been shown to increase SIRT1 activity and stimulate deacetylation. Glioblastoma multiforme (GBM) is the deadliest of malignant types of tumor in the central nervous system (CNS) and their biological features make treatment difficult. In the glioma microenvironment, infiltrating immune cells has been shown to possess beneficial effects for tumor progression. We analyzed SIRT1, CCL2, VCAM-1 and ICAM-1 in human glioma cell lines by immunoblotting. The correlation between those markers and clinico-pathological grade of glioma patients were assessed by the Gene Expression Omnibus (GEO) datasets analysis. We also used monocyte-binding assay to study the effects of melatonin on monocyte adhesion to GBM. Importantly, overexpression of SIRT1 by genetic modification or treatment of melatonin significantly downregulated the adhesion molecular VCAM-1 and ICAM-1 expression in GBM. CCL2-mediated monocyte adhesion and expression of VCAM-1 and ICAM-1 were regulated through SIRT1 signaling. SIRT1 is an important modulator of monocytes interaction with GBM that gives the possibility of improved therapies for GBM. Hence, this study provides a novel treatment strategy for the understanding of microenvironment changes in tumor progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Melatonina , Sirtuina 1/metabolismo , Microambiente Tumoral , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioblastoma/genética , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
18.
Am J Chin Med ; 47(3): 657-674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30974966

RESUMEN

Glioblastoma (GBM) is the most commonly occurring tumor in the cerebral hemispheres. Currently, temozolomide (TMZ), an alkylating agent that induces DNA strand breaks, is considered the frontline chemotherapeutic agent for GBM. Despite its frontline status, GBM patients commonly exhibit resistance to TMZ treatment. We have recently established and characterized TMZ-resistant human glioma cells. The aim of this study is to investigate whether curcumin modulates cell apoptosis through the alternation of the connexin 43 (Cx43) protein level in TMZ-resistant GBM. Overexpression of Cx43, but not ATP-binding cassette transporters (ABC transporters), was observed (approximately 2.2-fold) in TMZ-resistant GBM cells compared to the Cx43 levels in parental GBM cells. Furthermore, at a concentration of 10 µ M, curcumin significantly reduced Cx43 protein expression by about 40%. In addition, curcumin did not affect the expression of other connexins like Cx26 or epithelial-to-mesenchymal transition (EMT) proteins such as ß -catenin or α E-catenin. Curcumin treatment led to an increase in TMZ-induced cell apoptosis from 4% to 8%. Importantly, it did not affect the mRNA expression level of Cx43. Concomitant treatment with the translation inhibitor cycloheximide (CHX) exerted additional effects on Cx43 degradation. Treatment with the autophagy inhibitor 3-MA (methyladenine) did not affect the curcumin-induced Cx43 degradation. Interestingly, treatment with the proteasome inhibitor MG132 (carbobenzoxy-Leu-Leu-leucinal) significantly negated the curcumin-induced Cx43 degradation, which suggests that curcumin-induced Cx43 degradation occurs through the ubiquitin-proteasome pathway.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Conexina 43/metabolismo , Curcumina/farmacología , Glioblastoma/genética , Glioblastoma/patología , Proteolisis/efectos de los fármacos , Temozolomida/farmacología , Humanos , Estimulación Química , Células Tumorales Cultivadas
19.
Chin J Dent Res ; 22(1): 21-28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30746529

RESUMEN

OBJECTIVE: To evaluate the time efficiency and patient preference of three impression techniques by comparing immediate digital impression performed directly after implantation with regular digital impression and conventional implant impression performed 3 months after implantation. METHODS: Twenty consecutive patients with a missing single molar or premolar who received implant treatment were recruited into this prospective self-controlled clinical trial. Three different impression techniques were performed after implant surgery on all the participants: An intraoral scanning (IOS) impression performed immediately after implant placement (immediate digital impression) was compared with a regular digital impression and a classic polyether impression (conventional implant impression) performed 3 months after implant surgery. The operating time of each impression technique was recorded. Patients were asked to complete a visual analogue scale (VAS) questionnaire on their perception of the three techniques to describe their satisfaction and preference. Statistical analyses were performed with the Wilcoxon signed rank test. RESULTS: The clinical time of the immediate digital impression (10.97 ± 2.1 min) was significantly shorter than that of the conventional implant impression (14.45 ± 3.0 min) (P < 0.05). The mean time of the immediate digital impression (10.97 ± 2.1 min) was statistically the same as that of the regular digital impression (10.23 ± 2.7 min) (P > 0.05). Participants' subjective evaluation indicated higher satisfaction with the immediate digital impression than with the regular digital impression and the conventional implant impression. CONCLUSION: The immediate digital impression was more efficient than the conventional implant impression and had the same efficiency as the regular digital impression. Among the three impression techniques, the participants showed higher satisfaction with the immediate digital impression.


Asunto(s)
Técnica de Impresión Dental , Prioridad del Paciente , Diseño Asistido por Computadora , Coronas , Humanos , Estudios Prospectivos
20.
J Proteome Res ; 18(1): 182-190, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30351951

RESUMEN

Stressful events promote psychopathogenic changes that might contribute to the development of mental illnesses. Some individuals tend to recover from the stress response, while some do not. However, the molecular mechanisms of stress resilience during stress are not well-characterized. Here, we identify proteomic changes in the hippocampus using proteomic technique to examine mice following chronic social defeat stress. We showed that small ubiquitin-like modifier (SUMO)-1 expression was significantly decreased in susceptible mice following chronic social defeat stress. We also examined a protein inhibitor of activated signal transducer of transcription (PIAS)1 levels, an E3 SUMO-protein ligase protein inhibitor of activated STAT1, which is known to interact with SUMO-1. PIAS1 was shown to be profoundly decreased and monoamine oxidase (MAO)-A increased in the hippocampus of susceptible mice following chronic social defeat stress. Furthermore, the manipulated PIAS1 expression in the hippocampus also has an influence on glucocorticoid receptor (GR) translocation. We also found that knockdown of PIAS1 expression in the hippocampus then subject to submaximal stress increased GR to glucocorticoid response element (GRE)-binding site on the MAO-A promoter. The present study raises the possibility of different levels of PIAS1 between individuals in response to chronic social defeat stress and that such differences may contribute to the susceptibility to stress.


Asunto(s)
Proteínas Inhibidoras de STAT Activados/metabolismo , Proteolisis , Proteómica/métodos , Estrés Psicológico/metabolismo , Animales , Enfermedad Crónica , Hipocampo/metabolismo , Ratones , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...