Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 277: 130339, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33780677

RESUMEN

Red soil, a typical soil type in southern China, has been deemed infertile or nutrient-deficient. In this study, red soil was firstly utilized as a substrate for preparing catalysts, which were then successfully applied to the catalytic wet peroxide oxidation (CWPO) of cephalexin. The highest cephalexin removal was 95.23% and TOC removal was 60.58%, with the catalyst pyrolyzed at 500 °C (RC500). The high iron content and proportion of Fe(II) on the surface of RC500 was responsible for the decomposition of H2O2 into· OH. Moreover, the porous structure and existence of other minerals (such as SiO2 and Al2O3) in the catalyst were also significant for enhancing the catalytic activity of RC500. Afterwards, the influencing parameters, including temperature, pH, the dose of H2O2, and catalyst, were examined for cephalexin degradation. It was noteworthy that RC500 was efficient in treating hospital wastewater when using a self-design pilot device. A density functional theory analysis of cephalexin was conducted to establish the possible position attacked by ·OH, and the possibly ruptured one. Meanwhile, the intermediates generated during CWPO were identified. Finally, a reliable degradation pathway of cephalexin was proposed on the basis of the results.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Catálisis , Cefalexina , China , Oxidación-Reducción , Dióxido de Silicio , Suelo
2.
Chemosphere ; 255: 126939, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32402883

RESUMEN

This study proposes a novel approach for utilizing granular sludge discharged from anaerobic reactors to prepare an effective and stable catalyst for the removal of refractory contaminants in catalytic wet peroxide oxidation (CWPO). By implementing the response surface methodology, the experimental conditions for m-cresol degradation in CWPO with a HNO3-modified sludge carbon (GSC-M) as catalyst were explored. The removal efficiencies for m-cresol and total organic carbon (TOC) were 100% and 91.4%, respectively, at the optimal conditions of 60 °C for 120 min with a pH of 3, H2O2 dosage of 1.85 g/L, and catalyst dosage of 0.75 g/L. A continuous experiment was conducted for 6 d to investigate the durability and catalytic performance of GSC-M, resulting in a TOC removal above 90% with the catalyst maintaining its original morphology. GSC-M catalyst exhibited excellent stability and low iron leaching (0.34%). The high catalytic degradation could be attributed to a high content of iron species, various types of surface functional groups, porous structures, and the π-π interaction between aromatic clusters in sludge carbon and the benzene ring of m-cresol. Interestingly, GSC-M catalyst exhibited magnetic properties which are beneficial for recycling. Based on the identified intermediates, a possible degradation pathway of m-cresol was proposed.


Asunto(s)
Cresoles/metabolismo , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Carbono/química , Catálisis , Cresoles/química , Peróxido de Hidrógeno/química , Hierro , Oxidación-Reducción , Peróxidos/química , Pirólisis , Reciclaje , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...