Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13893, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886528

RESUMEN

We present a new learning-based framework S-3D-RCNN that can recover accurate object orientation in SO(3) and simultaneously predict implicit rigid shapes from stereo RGB images. For orientation estimation, in contrast to previous studies that map local appearance to observation angles, we propose a progressive approach by extracting meaningful Intermediate Geometrical Representations (IGRs). This approach features a deep model that transforms perceived intensities from one or two views to object part coordinates to achieve direct egocentric object orientation estimation in the camera coordinate system. To further achieve finer description inside 3D bounding boxes, we investigate the implicit shape estimation problem from stereo images. We model visible object surfaces by designing a point-based representation, augmenting IGRs to explicitly address the unseen surface hallucination problem. Extensive experiments validate the effectiveness of the proposed IGRs, and S-3D-RCNN achieves superior 3D scene understanding performance. We also designed new metrics on the KITTI benchmark for our evaluation of implicit shape estimation.

2.
Carbohydr Res ; 521: 108676, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36126413

RESUMEN

Cellulose and pectin are the important components of tobacco (Nicotiana tabacum L.) cell wall, which affect the formation of undesirable compounds. Their contents are closely related to the harmfulness of tobacco. But the simultaneous quantitative analysis of cellulose and pectin is hard to be achieved for traditional analytical methods. A solid-state 13C cross-polarization by multiple contact periods (multiCP) NMR method was developed for the simultaneous quantification of cellulose and pectin in tobacco. The multiCP spectrum at optimal parameters agreed well with the direct polarization (DP) spectrum within one-thirtieth of the measurement time and provided satisfactory signal to noise ratio (SNR). After three simple procedures of sample preparation and spectra deconvolution, simultaneous quantification of cellulose and pectin extracted from tobacco was effectively achieved. Compared with the chemical method, this interesting method was rapid, practicable, and very promising, which provided the technical support for the simultaneous quantification of cell wall substances in biological sample.


Asunto(s)
Celulosa , Pectinas , Pared Celular/química , Celulosa/química , Espectroscopía de Resonancia Magnética/métodos , Pectinas/química , Nicotiana
3.
IEEE Trans Image Process ; 30: 8034-8045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34546921

RESUMEN

We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously. To tackle these three naturally different dimensions, we proposed a general framework by defining pruning as seeking the best pruning vector (i.e., the numerical value of layer-wise channel number, spatial size, depth) and construct a unique mapping from the pruning vector to the pruned network structures. Then we optimize the pruning vector with gradient update and model joint pruning as a numerical gradient optimization process. To overcome the challenge that there is no explicit function between the loss and the pruning vectors, we proposed self-adapted stochastic gradient estimation to construct a gradient path through network loss to pruning vectors and enable efficient gradient update. We show that the joint strategy discovers a better status than previous studies that focused on individual dimensions solely, as our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods. Extensive experiments on large-scale ImageNet dataset across a variety of network architectures MobileNet V1&V2&V3 and ResNet demonstrate the effectiveness of our proposed method. For instance, we achieve significant margins of 2.5% and 2.6% improvement over the state-of-the-art approach on the already compact MobileNet V1&V2 under an extremely large compression ratio.

4.
Biotechnol Biofuels ; 14(1): 106, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906681

RESUMEN

BACKGROUND: During the biomass-to-bio-oil conversion process, many studies focus on studying the association between biomass and bio-products using near-infrared spectra (NIR) and chemical analysis methods. However, the characterization of biomass pyrolysis behaviors using thermogravimetric analysis (TGA) with support vector machine (SVM) algorithm has not been reported. In this study, tobacco was chosen as the object for biomass, because the cigarette smoke (including water, tar, and gases) released by tobacco pyrolysis reactions decides the sensory quality, which is similar to biomass as a renewable resource through the pyrolysis process. RESULTS: SVM algorithm has been employed to automatically classify the planting area and growing position of tobacco leaves using thermogravimetric analysis data as the information source for the first time. Eighty-eight single-grade tobacco samples belonging to four grades and eight categories were split into the training, validation, and blind testing sets. Our model showed excellent performances in both the training and validation set as well as in the blind test, with accuracy over 91.67%. Throughout the whole dataset of 88 samples, our model not only provides precise results on the planting area of tobacco leave, but also accurately distinguishes the major grades among the upper, lower, and middle positions. The error only occurs in the classification of subgrades of the middle position. CONCLUSIONS: From the case study of tobacco, our results validated the feasibility of using TGA with SVM algorithm as an objective and fast method for auto-classification of tobacco planting area and growing position. In view of the high similarity between tobacco and other biomasses in the compositions and pyrolysis behaviors, this new protocol, which couples the TGA data with SVM algorithm, can potentially be extrapolated to the auto-classification of other biomass types.

5.
Nucleic Acids Res ; 44(D1): D1127-32, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26503249

RESUMEN

The BDB database (http://immunet.cn/bdb) is an update of the MimoDB database, which was previously described in the 2012 Nucleic Acids Research Database issue. The rebranded name BDB is short for Biopanning Data Bank, which aims to be a portal for biopanning results of the combinatorial peptide library. Last updated in July 2015, BDB contains 2904 sets of biopanning data collected from 1322 peer-reviewed papers. It contains 25,786 peptide sequences, 1704 targets, 492 known templates, 447 peptide libraries and 310 crystal structures of target-template or target-peptide complexes. All data stored in BDB were revisited, and information on peptide affinity, measurement method and procedures was added for 2298 peptides from 411 sets of biopanning data from 246 published papers. In addition, a more professional and user-friendly web interface was implemented, a more detailed help system was designed, and a new on-the-fly data visualization tool and a series of tools for data analysis were integrated. With these new data and tools made available, we expect that the BDB database would become a major resource for scholars using phage display, with improved utility for biopanning and related scientific communities.


Asunto(s)
Bases de Datos de Compuestos Químicos , Biblioteca de Péptidos , Péptidos/química , Técnicas de Visualización de Superficie Celular , Internet , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA