Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38724007

RESUMEN

BACKGROUND & AIMS: Both nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) are prevalent worldwide. The effects of concomitant NAFLD on the risk of colorectal liver metastasis (CRLM) and its mechanisms have not been definitively elucidated. METHODS: We observed the effect of concomitant NAFLD on CRLM in the mouse model and explored the underlying mechanisms of specific myeloid-derived suppressor cells (MDSCs) recruitment and then tested the therapeutic application based on the mechanisms. Finally we validated our findings in the clinical samples. RESULTS: Here we prove that in different mouse models, NAFLD induces F4/80+ Kupffer cells to secret chemokine CXCL5 and then recruits CXCR2+ MDSCs to promote the growth of CRLM. CRLM with NAFLD background is refractory to the anti-PD-1 monoclonal antibody treatment, but when combined with Reparixin, an inhibitor of CXCR1/2, dual therapy cures the established CRLM in mice with NAFLD. Our clinical studies also indicate that fatty liver diseases increase the infiltration of CXCR2+ MDSCs, as well as the hazard of liver metastases in CRC patients. CONCLUSIONS: Collectively, our findings highlight the significance of selective CXCR2+/CD11b+/Gr-1+ subset myeloid cells in favoring the development of CRLM with NAFLD background and identify a pharmaceutical medicine that is already available for the clinical trials and potential treatment.

2.
Nat Commun ; 15(1): 3260, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627377

RESUMEN

Notable-HCC (NCT05185531) is a phase 1b trial, aiming to evaluate the safety and preliminary effectiveness of neoadjuvant PD-1 blockade plus stereotactic body radiotherapy (SBRT) in early-stage resectable hepatocellular carcinoma (HCC). Twenty patients with HCC of BCLC stage 0-A received 3 × Gy SBRT and two cycles of tislelizumab, an anti-PD-1 monoclonal antibody before the curative HCC resection. Primary endpoints were the surgery delay, radiographic and pathological tumor response after the neoadjuvant therapy, safety and tolerability. During the neoadjuvant therapy, treatment-related adverse events (TRAEs) of grade 1-2 occurred in all 20 patients (100%), eight patients (40%) had grade 3 TRAEs, no grade 4 to 5 TRAE occurred, and all resolved without corticosteroids treatment. Per mRECIST, the objective response rate was 63.2% (12/19), with 3 complete response; the disease control rate was 100%. Two (10.5%) patients achieved complete pathological response. No surgery delay occurred. The neoadjuvant therapy did not increase the surgical difficulty or the incidence of complications. Secondary endpoints of disease-free survival and overall survival were not mature at the time of the analysis. Our pilot trial shows that neoadjuvant therapy with anti-PD-1 + SBRT is safe and promotes tumor responses in early-stage resectable HCC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirugia , Humanos , Terapia Neoadyuvante , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Radiocirugia/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Estadificación de Neoplasias , Adyuvantes Inmunológicos
3.
BMC Cancer ; 23(1): 465, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210519

RESUMEN

AIM: To understand the proportion of uHCC (unresectable hepatocellular carcinoma) patients who achieve successful conversion resection in a high-volume setting with state of the art treatment options. METHODS: We retrospectively reviewed all HCC patients hospitalized to our center from June 1st, 2019 to June 1st, 2022. Conversion rate, clinicopathological features, response to systemic and/or loco-regional therapy and surgical outcomes were analyzed. RESULTS: A total of 1,904 HCC patients were identified, with 1672 patients receiving anti-HCC treatment. 328 patients were considered up-front resectable. Of the remaining 1344 uHCC patients, 311 received loco-regional treatment, 224 received systemic treatment, and the remainder (809) received combination systemic plus loco-regional treatment. Following treatment, one patient from the systemic group and 25 patients from the combination group were considered to have resectable disease. A high objective response rate (ORR) was observed in these converted patients (42.3% under RECIST v1.1 and 76.9% under mRECIST criteria). The disease control rate (DCR) reached 100%. 23 patients underwent curative hepatectomy. Major post-operative morbidity was equivalent in the both groups (P=0.76). Pathologic complete response (pCR) was 39.1%. During conversion treatment, grade 3 or higher treatment-related adverse events (TRAEs) were observed in 50% of patients. The median follow-up time was 12.9 months (range, 3.9~40.6) from index diagnosis and 11.4 months (range, 0.9~26.9) from resection. Three patients experienced disease recurrence following conversion surgery. CONCLUSIONS: By intensive treatment, a small sub-group of uHCC patients (2%) may potentially be converted to curative resection. Loco-regional combined with systemic modality was relative safe and effective in the conversion therapy. Short-term outcomes are encouraging, but long-term follow-up in a larger patient population are required to fully understand the utility of this approach.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/patología , Terapia Combinada
4.
Front Plant Sci ; 14: 1084355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008469

RESUMEN

Aims: Drought stress is one of the most limiting factors for agriculture and ecosystem productivity. Climate change exacerbates this threat by inducing increasingly intense and frequent drought events. Root plasticity during both drought and post-drought recovery is regarded as fundamental to understanding plant climate resilience and maximizing production. We mapped the different research areas and trends that focus on the role of roots in plant response to drought and rewatering and asked if important topics were overlooked. Methods: We performed a comprehensive bibliometric analysis based on journal articles indexed in the Web of Science platform from 1900-2022. We evaluated a) research areas and temporal evolution of keyword frequencies, b) temporal evolution and scientific mapping of the outputs over time, c) trends in the research topics analysis, d) marked journals and citation analysis, and e) competitive countries and dominant institutions to understand the temporal trends of root plasticity during both drought and recovery in the past 120 years. Results: Plant physiological factors, especially in the aboveground part (such as "photosynthesis", "gas-exchange", "abscisic-acid") in model plants Arabidopsis, crops such as wheat and maize, and trees were found to be the most popular study areas; they were also combined with other abiotic factors such as salinity, nitrogen, and climate change, while dynamic root growth and root system architecture responses received less attention. Co-occurrence network analysis showed that three clusters were classified for the keywords including 1) photosynthesis response; 2) physiological traits tolerance (e.g. abscisic acid); 3) root hydraulic transport. Thematically, themes evolved from classical agricultural and ecological research via molecular physiology to root plasticity during drought and recovery. The most productive (number of publications) and cited countries and institutions were situated on drylands in the USA, China, and Australia. In the past decades, scientists approached the topic mostly from a soil-plant hydraulic perspective and strongly focused on aboveground physiological regulation, whereas the actual belowground processes seemed to have been the elephant in the room. There is a strong need for better investigation into root and rhizosphere traits during drought and recovery using novel root phenotyping methods and mathematical modeling.

5.
Front Plant Sci ; 14: 1060066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844101

RESUMEN

Drylands dominate the trend and variability of the land carbon (C) sink. A better understanding of the implications of climate-induced changes in the drylands for C sink-source dynamics is urgently needed. The effect of climate on ecosystem C fluxes (gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem productivity (NEP)) in drylands has been extensively explored, but the roles of other concurrently changing factors, such as vegetation conditions and nutrient availability, remain unclear. We used eddy-covariance C-flux measurements from 45 ecosystems with concurrent information on climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), soil (soil moisture (SM) and soil total nitrogen content (soil N)), and vegetation (leaf area index (LAI) and leaf nitrogen content (LNC)) factors to assess their roles in C fluxes. The results showed that the drylands in China were weak C sinks. GPP and ER were positively correlated with MAP, while they were negatively correlated with MAT. NEP first decreased and then increased with increasing MAT and MAP, and 6.6 °C and 207 mm were the boundaries for the NEP response to MAT and MAP, respectively. SM, soil N, LAI, and MAP were the main factors affecting GPP and ER. However, SM and LNC had the most important influence on NEP. Compared with climate and vegetation factors, soil factors (SM and soil N) had a greater impact on C fluxes in the drylands. Climate factors mainly affected C fluxes by regulating vegetation and soil factors. To accurately estimate the global C balance and predict the response of ecosystems to environmental change, it is necessary to fully consider the discrepant effects of climate, vegetation, and soil factors on C fluxes, as well as the cascade relationships between different factors.

6.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679266

RESUMEN

Polyetheretherketone (PEEK) is a thermoplastic material widely used in engineering applications due to its good biomechanical properties and high temperature stability. Compared to traditional metal and ceramic dental materials, PEEK dental implants exhibit less stress shielding, thus better matching the mechanical properties of bone. As a promising medical material, PEEK can be used as implant abutments, removable and fixed prostheses, and maxillofacial prostheses. It can be blended with materials such as fibers and ceramics to improve its mechanical strength for better clinical dental applications. Compared to conventional pressed and CAD/CAM milling fabrication, 3D-printed PEEK exhibits excellent flexural and tensile strength and parameters such as printing temperature and speed can affect its mechanical properties. However, the bioinert nature of PEEK can make adhesive bonding difficult. The bond strength can be improved by roughening or introducing functional groups on the PEEK surface by sandblasting, acid etching, plasma treatment, laser treatment, and adhesive systems. This paper provides a comprehensive overview of the research progress on the mechanical properties of PEEK for dental applications in the context of specific applications, composites, and their preparation processes. In addition, the research on the adhesive properties of PEEK over the past few years is highlighted. Thus, this review aims to build a conceptual and practical toolkit for the study of the mechanical and adhesive properties of PEEK materials. More importantly, it provides a rationale and a general new basis for the application of PEEK in the dental field.

7.
Glob Chang Biol ; 29(4): 1144-1159, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349544

RESUMEN

Specific leaf area (SLA) is one of the most important plant functional traits. It integrates multiple functions and reflects strategies of plants to obtain resources. How plants employ different strategies (e.g., through SLA) to respond to dynamic environmental conditions remains poorly understood. This study aimed to explore the spatial variation in SLA and its divergent adaptation through the lens of biogeographic patterns, evolutionary history, and short-term responses. SLA data for 5424 plant species from 76 natural communities in China were systematically measured and integrated with meta-analysis of field experiments (i.e., global warming, drought, and nitrogen addition). The mean value of SLA across all species was 21.8 m2  kg-1 , ranging from 0.9 to 110.2 m2  kg-1 . SLA differed among different ecosystems, temperature zones, vegetation types, and functional groups. Phylogeny had a weak effect on SLA, but plant species evolved toward higher SLA. Furthermore, SLA responded nonlinearly to environmental change. Unexpectedly, radiation was one of the main factors determining the spatial variation in SLA on a large scale. Conversely, short-term manipulative experiments showed that SLA increased with increased resource availability and tended to stabilize with treatment duration. However, different species exhibited varying response patterns. Overall, variation in long-term adaptation of SLA to environmental gradients and its short-term response to resource pulses jointly improve plant adaptability to a changing environment. Overall SLA-environment relationships should be emphasized as a multidimensional strategy for elucidating environmental change in future research.


Asunto(s)
Ecosistema , Plantas , Aclimatación , Temperatura , Hojas de la Planta/fisiología
8.
Front Plant Sci ; 13: 1062055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578349

RESUMEN

Ecologically vulnerable areas (EVAs) are regions with ecosystems that are fragile and vulnerable to degradation under external disturbances, e.g., environmental changes and human activities. A comprehensive understanding of the climate change characteristics of EVAs in China is of great guiding significance for ecological protection and economic development. The ecosystem carbon use efficiency (CUEe) can be defined as the ratio of the net ecosystem productivity (NEP) to gross primary productivity (GPP), one of the most important ecological indicators of ecosystems, representing the capacity for carbon transfer from the atmosphere to a potential ecosystem carbon sink. Understanding the variation in the CUEe and its controlling factors is paramount for regional carbon budget evaluation. Although many CUEe studies have been performed, the spatial variation characteristics and influencing factors of the CUEe are still unclear, especially in EVAs in China. In this study, we synthesized 55 field measurements (3 forestland sites, 37 grassland sites, 6 cropland sites, 9 wetland sites) of the CUEe to examine its variation and influencing factors in EVAs in China. The results showed that the CUEe in EVAs in China ranged from -0.39 to 0.67 with a mean value of 0.20. There were no significant differences in the CUEe among different vegetation types, but there were significant differences in CUEe among the different EVAs (agro-pastoral ecotones < Tibetan Plateau < arid and semiarid areas < Loess Plateau). The CUEe first decreased and then increased with increasing mean annual temperature (MAT), soil pH and soil organic carbon (SOC) and decreased with increasing mean annual precipitation (MAP). The most important factors affecting the CUEe were biotic factors (NEP, GPP, and leaf area index (LAI)). Biotic factors directly affected the CUEe, while climate (MAT and MAP) and soil factors (soil pH and SOC) exerted indirect effects. The results illustrated the comprehensive effect of environmental factors and ecosystem attributes on CUEe variation, which is of great value for the evaluation of regional ecosystem functions.

9.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558304

RESUMEN

Direct ethanol fuel cell (DEFC) has attracted wide attention due to its wide range of fuel sources, cleanliness, and high efficiency. However, the problems of low catalytic efficiency and poor catalyst stability still exist in DEFC catalysts, which restrict its rapid development. With chloroplatinic acid (H2PtCl6·6H2O) as the precursor, Polyvinylpyrrolidone (PVP) plays the role of surfactant, stabilizer, and reducing agent in the experiment. Glycine is the surface control agent and co-reducing agent. Pt high-index facets nanocatalyst was prepared with the one-pot hydrothermal method by adjusting the amount of PVP and glycine. X-Ray Diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize the micro-structure of the nanocatalyst, and the influence of PVP and glycine on the synthesis of high-index facets catalyst was studied. The electrocatalytic performance of the catalyst was tested with an electrochemical workstation, and it was found that the performance of the prepared catalyst was better than that of the commercial catalyst. When the mass ratio of PVP and Pt was 50:1 and the molar ratio of glycine and Pt was 24:1, Pt nanocatalysts with {310}, {520} and {830} high exponential facets were prepared. The electrochemical test results showed that the peak current density of ethanol oxidation was 2.194 m2/g, and the steady-state current density was 0.241 mA/cm2, which was 5.7 times higher than that of commercial catalyst. The results of this paper show that due to the defects such as steps and kinks on the surface of the high-index facets, the active sites are increased, thus showing excellent electrocatalytic performance. This study provides a theoretical basis for the development and commercial application of high index facets nanocatalysts.

10.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2653-2662, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36384599

RESUMEN

Based on datasets from plot survey and bibliographic of Larix olgensis plantations in Maoer Mountain, the CO2FIX model was used to quantitatively simulate the effects of different rotations (30, 40, 50, 60 years), site indices (12, 16, 20 m), and initial densities (2500, 3333, 4444 trees·hm-2) on the stand level carbon flows among different carbon pools (i.e., biomass carbon pool, soil carbon pool, and product carbon pool). The results showed that the CO2FIX model had high reliability for simulating the processes of L. olgensis plantation, with the average relative errors of stand biomass and volume between analog and measured values being 6.4% and 3.7%. Under the baseline conditions of initial density of 3333 trees·hm-2, site index of 16 m and rotation of 40 years, the carbon stock of total and sub-pool of L. olgensis plantation changed periodically with rotation. The total stand carbon stock and volume for L. olgensis plantation increased with the extension of rotation, the improvement of site index, and the increase of initial density. The stand carbon stock and volume would be increased by 12.2% and 31.2%, 36.7% and 67.8%, respectively, when the reference rotation was correspondingly extended by 10 and 20 years. However, if the reference rotation was shortened by 10 years, stand carbon stock and volume would be correspondingly decreased by 20.9% and 40.4%, respectively. When the initial density was set as 3333 and 4444 trees·hm-2, stand carbon stock and volume were increased by 27.8% and 50.9%, 27.4% and 49.1%, respectively. When the site index was under the range of 12 to 20 m, stand carbon stock and volume could be increased by 36.0% and 40.3%, 39.3% and 44.2%, respectively, with each increase of 4 m in site index. During one rotation, 271.57 t C per hectare could be fixed into L. olgensis plantation. At the end round of the rotation, 27.47 and 56.75 t C were transferred to soil and wood product carbon pools. Therefore, when the site condition was good, the management model with a higher initial density (4444 trees·hm-2) and longer rotation (60 years) would be more beneficial to maximizing the carbon sink and timber benefits of L. olgensis plantation.


Asunto(s)
Secuestro de Carbono , Larix , Reproducibilidad de los Resultados , Carbono , Suelo , Árboles
11.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2339-2346, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36131648

RESUMEN

To explore the practical role of enhanced vegetation index (EVI) time series data in improving the accuracy of forest type recognition could promote the deep application of optical remote sensing data in forest resources investigation and monitoring. With Cuigang Forest Farm of Xinlin Forestry Bureau in Daxing'anling as the object, we constructed six classification schemes, using random forest algorithm with spectral feature, texture feature and EVI time series feature. The data sources were 20-view Landsat 8 OLI time series data from 2014 to 2018, 56 fixed plots data from 2017-2019, and the 2016 Class II survey data. Our aims were to realize the classification of forest types in Cuigang Forest Farm and to evaluate the accuracy of different classification schemes. The results showed the EVI values of Larix gmelinii forest, Betula platyphylla forest, coniferous-broadleaved mixed forest, coniferous mixed forest and broadleaved mixed forest were significantly different in non-growing seasons (36-111 days and 287-367 days), with the EVI value of mixed conifer forest being significantly higher, and that of mixed broadleaf forest being always lower than the other four forest types. In the early growing season (111-143 days), the EVI value of B. platyphylla forest were higher than L. gmelinii forest, which could effectively distinguish the two forests. Among the six classification schemes, spectral feature, texture feature, and EVI time series feature had the highest classification accuracy, with a Kappa of 0.82 and a classification accuracy of 86.1%. The comparison results showed that the overall accuracy of adding vegetation index time series feature was improved by 14.3% compared with that of spectral feature. The random forest algorithm with combined spectral, texture and EVI time series features could effectively classify forest stand types in Cuigang Forest Farm, with good recognition accuracy and confidence.


Asunto(s)
Larix , Tracheophyta , Betula , China , Granjas , Agricultura Forestal , Factores de Tiempo
12.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956484

RESUMEN

Seed traits (ST) influence seedling establishment, population dynamics, community composition and ecosystem function and reflect the adaptability of plants and the environmental conditions they experienced. There has been a historical and global accumulation of studies on ST, but with few pertaining to visual and quantitative analyses. To understand the trends in the field of ST research in the past 30 years, we conducted a bibliometric analysis based on the Science Citation Index-Expanded (SCI-E) database. The analysis provided annual publications, time trends for keywords, the most productive journals, authors, institutions and countries, and a comprehensive overview of the ST field. Our results showed that in the past 30 years, the number of publications in ST research has increased at an average annual growth rate of 9.1%, while the average number of citations per paper per year showed a rapid increase-slow increase-decrease trend. Keyword analysis showed that "germination" was the most popular research section. Crop Science ranked first among the top journals and Theoretical and Applied Genetics had greater influence in this area and more citations than other journals. The 10 most productive institutions were mostly located in the United States, China and Australia. Furthermore, the three countries also had the largest number of publications and citations. Our analysis showed that the research interests in ST have evolved from genetics and agricultural science to ecological research over the last thirty years; as more fields embrace ST research, there are opportunities for international and interdisciplinary collaborations, cooperative institutions and new advances in the field.

13.
Sci Total Environ ; 849: 157856, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35934043

RESUMEN

Annual gross primary productivity (AGPP) of terrestrial ecosystems is the largest carbon flux component in ecosystems; however, it's unclear whether photosynthetic capacity or phenology dominates interannual variation of AGPP, and a better understanding of this could contribute to estimation of carbon sinks and their interactions with climate change. In this study, observed GPP data of 494 site-years from 39 eddy covariance sites in Northern Hemisphere were used to investigate mechanisms of interannual variation of AGPP. This study first decomposed AGPP into three seasonal dynamic attribute parameters (growing season length (CUP), maximum daily GPP (GPPmax), and the ratio of mean daily GPP to GPPmax (αGPP)), and then decomposed AGPP into mean leaf area index (LAIm) and annual photosynthetic capacity per leaf area (AGPPlm). Furthermore, GPPmax was decomposed into leaf area index of DOYmax (the day when GPPmax appeared) (LAImax) and photosynthesis per leaf area of DOYmax (GPPlmax). Relative contributions of parameters to AGPP and GPPmax were then calculated. Finally, environmental variables of DOYmax were extracted to analyze factors influencing interannual variation of GPPlmax. Trends of AGPP in 39 ecosystems varied from -65.23 to 53.05 g C m-2 yr-2, with the mean value of 6.32 g C m-2 yr-2. Photosynthetic capacity (GPPmax and AGPPlm), not CUP or LAI, was the main factor dominating interannual variation of AGPP. GPPlmax determined the interannual variation of GPPmax, and temperature, water, and radiation conditions of DOYmax affected the interannual variation of GPPlmax. This study used the cascade relationship of "environmental variables-GPPlmax-GPPmax-AGPP" to explain the mechanism of interannual variation of AGPP, which can provide new ideas for the AGPP estimation based on seasonal dynamic of GPP.


Asunto(s)
Ecosistema , Fotosíntesis , Ciclo del Carbono , Cambio Climático , Estaciones del Año , Agua
14.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2077-2087, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36043813

RESUMEN

Affected by the disturbance of forest fire and logging, the primary forest in Daxing'an Mountains gradually degenerates into secondary forest. In this study, we established 16 plots in each of three typical forests, including natural Betula platyphylla pure forest (pioneer stage), natural B. platyphylla and Larix gmelinii mixed forest (transition stage) and natural L. gmelinii pure forest (top stage). The methods of population age and tree height structure, static life table, survival analysis, dynamic index and time series prediction were used to quantitatively analyze the dynamics of dominant species (B. platyphylla and L. gmelinii) and all the arbors, aiming to provide scientific basis for the restoration and development of natural L. gmelinii forest. The results showed that the abundance of young co-dominant species and total arbors in each stage was large, and that all population had strong self-renewal potential. With the progress of succession, the abundance of B. platyphylla in each age class gradually decreased, whereas that of L. gmelinii gradually increased. The mortality and disappearance rates of total arbors and B. platyphylla in the transition stage and L. gmelinii in the pioneer stage gradually increased with the increases of age class, and the survival curve was Deevey-Ⅰ type. The survival analysis results showed that the population was stable in the early stage, increased in the middle stage, and declined in the later stage. In other stages, the mortality rates fluctuated slightly, the survival curves were Deevey-Ⅱ type, and the population increased in the early stage, declined in the middle stage, and stable in the later stage. The co-dominant species and total arbors were growing in the three succession stages, among which B. platyphylla in the pioneer stage, L. gmelinii and total arbors in the top stage showed the lowest sensitivity to the environment. The results of time series prediction showed that the co-dominant species and total arbors in each stage would increase in the future. During forest succession, it was necessary to strengthen the protection of seedlings and young trees, thin the forest with large coverage, and take appropriate measures to ensure population renewal.


Asunto(s)
Bosques , Larix , Betula , China , Árboles
15.
Acta Chim Slov ; 69(1): 133-146, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35298014

RESUMEN

Cerium carbonate crystal morphology is predicted using density functional theory (DFT) simulations in this paper. In the nucleation phase, the ketone group in polyvinylpyrrolidone (PVP) will preferentially bind to Ce3+ to form complexes and provide heterogeneous nucleation sites for the system, prompting the nucleation of cerium carbonate crystals. In the growth stage, due to the adsorption of PVP, the probability of (120) crystal plane appearing in the equilibrium state is the greatest, resulting in the formation of hexagonal flake cerium carbonate crystals with (120) crystal plane as the oblique edge. Experimentally, hexagonal sheet cerium carbonate crystals were successfully prepared using PVP as a template agent. Therefore, DFT can be used to predict the morphology of cerium carbonate crystals, which not only elucidates the growth mechanism of cerium carbonate crystals, but also greatly reduces the experimental cost.

16.
Front Bioeng Biotechnol ; 10: 1092916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601391

RESUMEN

Titanium and Titanium alloys are widely used as biomedical implants in oral and maxillofacial surgery, due to superior mechanical properties and biocompatibility. In specific clinical populations such as the elderly, diabetics and patients with metabolic diseases, the failure rate of medical metal implants is increased significantly, putting them at increased risk of revision surgery. Many studies show that the content of reactive oxygen species (ROS) in the microenvironment of bone tissue surrounding implant materials is increased in patients undergoing revision surgery. In addition, the size and shape of materials, the morphology, wettability, mechanical properties, and other properties play significant roles in the production of ROS. The accumulated ROS break the original balance of oxidation and anti-oxidation, resulting in host oxidative stress. It may accelerate implant degradation mainly by activating inflammatory cells. Peri-implantitis usually leads to a loss of bone mass around the implant, which tends to affect the long-term stability and longevity of implant. Therefore, a great deal of research is urgently needed to focus on developing antibacterial technologies. The addition of active elements to biomedical titanium and titanium alloys greatly reduce the risk of postoperative infection in patients. Besides, innovative technologies are developing new biomaterials surfaces conferring anti-infective properties that rely on the production of ROS. It can be considered that ROS may act as a messenger substance for the communication between the host and the implanted material, which run through the entire wound repair process and play a role that cannot be ignored. It is necessary to understand the interaction between oxidative stress and materials, the effects of oxidative stress products on osseointegration and implant life as well as ROS-induced bactericidal activity. This helps to facilitate the development of a new generation of well-biocompatible implant materials with ROS responsiveness, and ultimately prolong the lifespan of implants.

17.
J Arid Land ; 13(11): 1089-1102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899874

RESUMEN

Drylands refer to regions with an aridity index lower than 0.65, and billions of people depend on services provided by the critically important ecosystems in these areas. How ecosystem carbon exchange in global drylands (CED) occurs and how climate change affects CED are critical to the global carbon cycle. Here, we performed a comprehensive bibliometric study on the fields of annual publications, marked journals, marked institutions, marked countries, popular keywords, and their temporal evolution to understand the temporal trends of CED research over the past 30 a (1991-2020). We found that the annual scientific publications on CED research increased significantly at an average growth rate of 7.93%. Agricultural Water Management ranked first among all journals and had the most citations. The ten most productive institutions were centered on drylands in America, China, and Australia that had the largest number and most citations of publications on CED research. "Climate change" and climate-related (such as "drought", "precipitation", "temperature", and "rainfall") research were found to be the most popular study areas. Keywords were classified into five clusters, indicating the five main research focuses on CED studies: hydrological cycle, effects of climate change, carbon and water balance, productivity, and carbon-nitrogen-phosphorous coupling cycles. The temporal evolution of keywords further showed that the areas of focus on CED studies were transformed from classical pedology and agricultural research to applied ecology and then to global change ecological research over the past 30 a. In future CED studies, basic themes (such as "water", "yield", and "salinity") and motor themes (such as "climate change", "sustainability", and "remote sensing") will be the focus of research on CED. In particular, multiple integrated methods to understand climate change and ecosystem sustainability are potential new research trends and hotspots.

18.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2763-2772, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34664449

RESUMEN

Based on data from 49 plots of natural Larix gmelinii forests in Cuigang Forest Farm of Xinlin Forestry Bureau, Daxing'anling Mountains, China, we used 37 measurable variables that mainly focused on stand non-spatial structure, stand spatial structure, species diversity, soil condition, and site condition to construct the structural equation model of natural regeneration densities and size diversities (i.e., height and ground-diameter). The direct, indirect, and total influence coefficients of each path were quantified to extract the critical and controllable factors that influence regeneration density and diversity of natural L. gmelinii forests, which would help implement sustainable forest management. The results showed that the effects of various latent variables on rege-neration density were following an order as: stand non-spatial structure (-0.410) > species diversity (0.380) > soil condition (0.250) > site condition (0.249) > stand spatial structure (0.197), while the order were changed as: soil condition (0.778) > site condition (0.748) > stand spatial structure (0.684) > stand non-spatial structure (0.287) > forest diversity (0.105), when evaluated on the regeneration diversity. Generally, the critical and controllable factors affecting rege-neration quantity and diversity were soil pH, total potassium concentration, species diversity, tree height diversity, uniform angle index and stand volume per hectare. In the management, suitable thinning treatments or replanting broadleaved trees were recommended for optimizing and adjusting species composition, species diversity, soil pH and nutrition, which would promote natural regene-ration.


Asunto(s)
Larix , China , Bosques , Modelos Teóricos , Árboles
19.
Polymers (Basel) ; 13(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641108

RESUMEN

Based on poly(vinylidene fluoride)/graphene (PVDF/GP) nano-composite powder, with high ß-phase content (>90%), prepared on our self-designed pan-mill mechanochemical reactor, the micro-injection molding of PVDF/GP composite was successfully realized and micro-parts with good replication and dimensional stability were achieved. The filling behaviors and the structure evolution of the composite during the extremely narrow channel of the micro-injection molding were systematically studied. In contrast to conventional injection molding, the extremely high injection speed and small cavity of micro-injection molding produced a high shear force and cooling rate, leading to the obvious "skin-core" structure of the micro-parts and the orientation of both PVDF and GP in the shear layer, thus, endowing the micro-parts with a higher melting point and crystallinity and also inducing the transformation of more α-phase PVDF to ß-phase. At the injection speed of 500 mm/s, the ß-phase PVDF in the micro-part was 78%, almost two times of that in the macro-part, which was beneficial to improve the dielectric properties. The micro-part had the higher tensile strength (57.6 MPa) and elongation at break (53.6%) than those of the macro-part, due to its increased crystallinity and ß-phase content.

20.
Hepatology ; 73(4): 1381-1398, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32609900

RESUMEN

BACKGROUND AND AIMS: Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS: Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor ß (PDGFß)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFß receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS: MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.


Asunto(s)
Carcinoma Hepatocelular/terapia , Quimioembolización Terapéutica/métodos , Resistencia a Antineoplásicos/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/terapia , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Células A549 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Estudios de Cohortes , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , MicroARNs/genética , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Transcriptoma , Transfección , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...