Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242953

RESUMEN

High cost, low crystallinity, and low-melt strength limit the market application of the biodegradable material poly (butylene adipate-co-terephthalate) (PBAT), which has become a major obstacle to the promotion of PBAT products. Herein, with PBAT as resin matrix and calcium carbonate (CaCO3) as filler, PBAT/CaCO3 composite films were designed and prepared with a twin-screw extruder and single-screw extrusion blow-molding machine designed, and the effects of particle size (1250 mesh, 2000 mesh), particle content (0-36%) and titanate coupling agent (TC) surface modification of CaCO3 on the properties of PBAT/CaCO3 composite film were investigated. The results showed that the size and content of CaCO3 particles had a significant effect on the tensile properties of the composites. The addition of unmodified CaCO3 decreased the tensile properties of the composites by more than 30%. TC-modified CaCO3 improved the overall performance of PBAT/CaCO3 composite films. The thermal analysis showed that the addition of titanate coupling agent 201 (TC-2) increased the decomposition temperature of CaCO3 from 533.9 °C to 566.1 °C, thereby enhancing the thermal stability of the material. Due to the heterogeneous nucleation of CaCO3, the addition of modified CaCO3 raised the crystallization temperature of the film from 97.51 °C to 99.67 °C and increased the degree of crystallization from 7.09% to 14.83%. The tensile property test results showed that the film reached the maximum tensile strength of 20.55 MPa with the addition of TC-2 at 1%. The results of contact angle, water absorption, and water vapor transmission performance tests showed that TC-2 modified CaCO3 increased the water contact angle of the composite film from 85.7° to 94.6° and decreased the water absorption from 13% to 1%. When the additional amount of TC-2 was 1%, the water vapor transmission rate of the composites was reduced by 27.99%, and the water vapor permeability coefficient was reduced by 43.19%.

2.
ACS Appl Mater Interfaces ; 12(35): 39145-39153, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805894

RESUMEN

In order to improve the thermoelectric properties of single-walled carbon nanotubes (SWCNTs), bilayer-like structures of graphene quantum dots (GQDs) and SWCNTs films (b-GQDs/SWCNTs) were prepared by directly coating GQDs on the surface of SWCNTs films. Compared to pristine SWCNT films (p-SWCNTs), the electrical conductivity of b-GQDs/SWCNTs increased while their Seebeck coefficient decreased. The special interface structure of GQDs and SWCNTs can not only improve carrier transport to increase electrical conductivity but also scatter phonons to reduce thermal conductivity. A maximum power factor (PF) of 51.2 µW·m-1·K-2 is obtained at 298 K for the b-GQDs/SWCNTs (2:100), which is higher than the PF of 40.9 µW·m-1·K-2 by p-SWCNTs. Incorporation of GQDs shows an obvious improvement in power factor and a significant reduction in the thermal conductivity for SWCNTs, and thus, preparation of b-GQDs/SWCNTs provides a new strategy to enhance the thermoelectric properties of SWCNTs-based materials.

3.
Environ Technol ; 38(13-14): 1679-1688, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28278768

RESUMEN

Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.


Asunto(s)
Materiales de Construcción , Vidrio , Residuos Industriales , Aguas del Alcantarillado , Silicatos de Aluminio , Arcilla , Vidrio/química , Residuos Industriales/análisis , Metales/análisis , Reciclaje , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA