Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39336719

RESUMEN

Multiple transcription factors in the budding yeast Saccharomyces cerevisiae are required for the switch from fermentative growth to respiratory growth. The Hap2/3/4/5 complex is a transcriptional activator that binds to CCAAT sequence elements in the promoters of many genes involved in the tricarboxylic acid cycle and oxidative phosphorylation and activates gene expression. Adr1 and Cat8 are required to activate the expression of genes involved in the glyoxylate cycle, gluconeogenesis, and utilization of nonfermentable carbon sources. Here, we characterize the regulation and function of the zinc cluster transcription factor Gsm1 using Western blotting and lacZ reporter-gene analysis. GSM1 is subject to glucose repression, and it requires a CCAAT sequence element for Hap2/3/4/5-dependent expression under glucose-derepression conditions. Genome-wide CHIP analyses revealed many potential targets. We analyzed 29 of them and found that FBP1, LPX1, PCK1, SFC1, and YAT1 require both Gsm1 and Hap4 for optimal expression. FBP1, PCK1, SFC1, and YAT1 play important roles in gluconeogenesis and utilization of two-carbon compounds, and they are known to be regulated by Cat8. GSM1 overexpression in cat8Δ mutant cells increases the expression of these target genes and suppresses growth defects in cat8Δ mutants on lactate medium. We propose that Gsm1 and Cat8 have shared functions in gluconeogenesis and utilization of nonfermentable carbon sources and that Cat8 is the primary regulator.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Gluconeogénesis , Glucosa , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Gluconeogénesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Glucosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carbono/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Regiones Promotoras Genéticas , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Transactivadores
2.
ACS Nano ; 18(34): 23196-23204, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39141918

RESUMEN

Excitonic devices operate based on excitons, which can be excited by photons as well as emitting photons and serve as a medium for photon-carrier conversion. Excitonic devices are expected to combine the advantages of both the high response rate of photonic devices and the high integration of electronic devices simultaneously. However, because of the neutral feature, exciton transport is generally achieved via diffusion rather than using electric fields, and the efficient control of exciton flux directionality has always been difficult. In this work, a precisely designed one-dimensional periodic nanostructure (1DPS) is used to introduce periodic strain field along with resonant mode to the WS2 monolayer, achieving exciton oriented diffusion with a 7.6-fold exciton diffusion coefficient enhancement relative to that of intrinsic, while enhancing the excitonic emission intensity by a factor of 10 and reducing exciton saturation threshold power by 2 orders of magnitude. Based on the analysis of the density functional theory (DFT) and the finite-element method (FEM), we attribute the anisotropy of exciton diffusion to exciton funneling induced by periodic potentials, which do not require excessive potential height difference for an efficient oriented diffusion. As a result of resonant emission, the exciton diffusion is dragged into the nonlinear regime owing to the high exciton density close to saturation, which improves the exciton diffusion coefficient and diffusion anisotropy more appreciably.

3.
Microorganisms ; 12(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065219

RESUMEN

Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast S. cerevisiae adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid. Here, we show that protein kinase A (PKA) is a negative regulator of Haa1-dependent gene expression under both basal and acetic acid stress conditions. Deletions of RAS2, encoding a positive regulator of PKA, and PDE2, encoding a negative regulator of PKA, lead to an increased and decreased expression of Haa1-regulated genes, respectively. Importantly, the deletion of HAA1 largely reverses the effects of ras2∆. Additionally, the expression of a dominant, hyperactive RAS2A18V19 mutant allele also reduces the expression of Haa1-regulated genes. We found that both pde2Δ and RAS2A18V19 reduce cell fitness in response to acetic acid stress, while ras2Δ increases cellular adaptation. There are three PKA catalytic subunits in yeast, encoded by TPK1, TPK2, and TPK3. We show that single mutations in TPK1 and TPK3 lead to the increased expression of Haa1-regulated genes, while tpk2Δ reduces their expression. Among tpk double mutations, tpk1Δ tpk3Δ greatly increases the expression of Haa1-regulated genes. We found that acetic acid stress in a tpk1Δ tpk3Δ double mutant induces a flocculation phenotype, which is reversed by haa1Δ. Our findings reveal PKA to be a negative regulator of the acetic acid stress response and may help engineer yeast strains with increased efficiency of bioethanol fermentation.

4.
Light Sci Appl ; 12(1): 6, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588111

RESUMEN

Phonon-assisted photon upconversion (UPC) is an anti-Stokes process in which incident photons achieve higher energy emission by absorbing phonons. This letter studies phonon-assisted UPC in twisted 2D semiconductors, in which an inverted contrast between UPC and conventional photoluminescence (PL) of WSe2 twisted bilayer is emergent. A 4-fold UPC enhancement is achieved in 5.5° twisted bilayer while PL weakens by half. Reduced interlayer exciton conversion efficiency driven by lattice relaxation, along with enhanced pump efficiency resulting from spectral redshift, lead to the rotation-angle-dependent UPC enhancement. The counterintuitive phenomenon provides a novel insight into a unique way that twisted angle affects UPC and light-matter interactions in 2D semiconductors. Furthermore, the UPC enhancement platform with various superimposable means offers an effective method for lighting bilayers and expanding the application prospect of 2D stacked van der Waals devices.

5.
Microorganisms ; 10(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36557625

RESUMEN

Mitochondrial biogenesis is tightly regulated in response to extracellular and intracellular signals, thereby adapting yeast cells to changes in their environment. The Hap2/3/4/5 complex is a master transcriptional regulator of mitochondrial biogenesis in yeast. Hap4 is the regulatory subunit of the complex and exhibits increased expression when the Hap2/3/4/5 complex is activated. In cells grown under glucose derepression conditions, both the HAP4 transcript level and Hap4 protein level are increased. As part of an inter-organellar signaling mechanism coordinating gene expression between the mitochondrial and nuclear genomes, the activity of the Hap2/3/4/5 complex is reduced in respiratory-deficient cells, such as ρ0 cells lacking mitochondrial DNA, as a result of reduced Hap4 protein levels. However, the underlying mechanism is unclear. Here, we show that reduced HAP4 expression in ρ0 cells is mediated through both transcriptional and post-transcriptional mechanisms. We show that loss of mitochondrial DNA increases the turnover of Hap4, which requires the 26S proteasome and ubiquitin-conjugating enzymes Ubc1 and Ubc4. Stabilization of Hap4 in the ubc1 ubc4 double mutant leads to increased expression of Hap2/3/4/5-target genes. Our results indicate that mitochondrial biogenesis in yeast is regulated by the functional state of mitochondria partly through ubiquitin/proteasome-dependent turnover of Hap4.

6.
Hum Mol Genet ; 31(5): 705-717, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34570221

RESUMEN

We tested the ability of alpha-synuclein (α-syn) to inhibit Snx3-retromer-mediated retrograde trafficking of Kex2 and Ste13 between late endosomes and the trans-Golgi network (TGN) using a Saccharomyces cerevisiae model of Parkinson's disease. Kex2 and Ste13 are a conserved, membrane-bound proprotein convertase and dipeptidyl aminopeptidase, respectively, that process pro-α-factor and pro-killer toxin. Each of these proteins contains a cytosolic tail that binds to sorting nexin Snx3. Using a combination of techniques, including fluorescence microscopy, western blotting and a yeast mating assay, we found that α-syn disrupts Snx3-retromer trafficking of Kex2-GFP and GFP-Ste13 from the late endosome to the TGN, resulting in these two proteins transiting to the vacuole by default. Using three α-syn variants (A53T, A30P, and α-synΔC, which lacks residues 101-140), we further found that A53T and α-synΔC, but not A30P, reduce Snx3-retromer trafficking of Kex2-GFP, which is likely to be due to weaker binding of A30P to membranes. Degradation of Kex2 and Ste13 in the vacuole should result in the secretion of unprocessed, inactive forms of α-factor, which will reduce mating efficiency between MATa and MATα cells. We found that wild-type α-syn but not A30P significantly inhibited the secretion of α-factor. Collectively, our results support a model in which the membrane-binding ability of α-syn is necessary to disrupt Snx3-retromer retrograde recycling of these two conserved endopeptidases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Endosomas/genética , Endosomas/metabolismo , Proproteína Convertasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33901283

RESUMEN

Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here, we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Supresión Genética , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Genetics ; 215(2): 463-482, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32317286

RESUMEN

Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3 Puf3 binds to the 3'-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3 in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25 We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3'-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3'-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Regulación Fúngica de la Expresión Génica , Biogénesis de Organelos , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinasa de la Caseína I/genética , Fosforilación , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
9.
Hum Mol Genet ; 27(9): 1514-1532, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29452354

RESUMEN

We probed the role of alpha-synuclein (α-syn) in modulating sorting nexin 3 (Snx3)-retromer-mediated recycling of iron transporters in Saccharomyces cerevisiae and Caenorhabditis elegans. In yeast, the membrane-bound heterodimer Fet3/Ftr1 is the high affinity iron importer. Fet3 is a membrane-bound multicopper ferroxidase, whose ferroxidase domain is orthologous to human ceruloplasmin (Cp), that oxidizes external Fe+2 to Fe+3; the Fe+3 ions then channel through the Ftr1 permease into the cell. When the concentration of external iron is low (<1 µM), Fet3/Ftr1 is maintained on the plasma membrane by retrograde endocytic-recycling; whereas, when the concentration of external iron is high (>10 µM), Fet3/Ftr1 is endocytosed and shunted to the vacuole for degradation. We discovered that α-syn expression phenocopies the high iron condition: under the low iron condition (<1 µM), α-syn inhibits Snx3-retromer-mediated recycling of Fet3/Ftr1 and instead shunts Fet3/Ftr1 into the multivesicular body pathway to the vacuole. α-Syn inhibits recycling by blocking the association of Snx3-mCherry molecules with endocytic vesicles, possibly by interfering with the binding of Snx3 to phosphatidylinositol-3-monophosphate. In C. elegans, transgenic worms expressing α-syn exhibit an age-dependent degeneration of dopaminergic neurons that is partially rescued by the iron chelator desferoxamine. This implies that α-syn-expressing dopaminergic neurons are susceptible to changes in iron neurotoxicity with age, whereby excess iron enhances α-syn-induced neurodegeneration. In vivo genetic analysis indicates that α-syn dysregulates iron homeostasis in worm dopaminergic neurons, possibly by inhibiting SNX-3-mediated recycling of a membrane-bound ortholog of Cp (F21D5.3), the iron exporter ferroportin (FPN1.1), or both.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animales , Proteínas Portadoras/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Modelos Animales de Enfermedad , Endocitosis/genética , Endocitosis/fisiología , Hierro/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/genética
10.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28432100

RESUMEN

Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation.IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry.


Asunto(s)
Ácidos/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
11.
Microb Cell ; 3(12): 621-631, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-28357334

RESUMEN

Yeast Saccharomyces cerevisiae grown on glucose undergoes programmed cell death (PCD) induced by acetic acid (AA-PCD), but evades PCD when grown in raffinose. This is due to concomitant relief of carbon catabolite repression (CCR) and activation of mitochondrial retrograde signaling, a mitochondria-to-nucleus communication pathway causing up-regulation of various nuclear target genes, such as CIT2, encoding peroxisomal citrate synthase, dependent on the positive regulator RTG2 in response to mitochondrial dysfunction. CCR down-regulates genes mainly involved in mitochondrial respiratory metabolism. In this work, we investigated the relationships between the RTG and CCR pathways in the modulation of AA-PCD sensitivity under glucose repression or de-repression conditions. Yeast single and double mutants lacking RTG2 and/or certain factors regulating carbon source utilization, including MIG1, HXK2, ADR1, CAT8, and HAP4, have been analyzed for their survival and CIT2 expression after acetic acid treatment. ADR1 and CAT8 were identified as positive regulators of RTG-dependent gene transcription. ADR1 and CAT8 interact with RTG2 and with each other in inducing cell resistance to AA-PCD in raffinose and controlling the nature of cell death. In the absence of ADR1 and CAT8, AA-PCD evasion is acquired through activation of an alternative factor/pathway repressed by RTG2, suggesting that RTG2 may play a function in promoting necrotic cell death in repressing conditions when RTG pathway is inactive. Moreover, our data show that simultaneous mitochondrial retrograde pathway activation and SNF1-dependent relief of CCR have a key role in central carbon metabolism reprogramming which modulates the yeast acetic acid-stress response.

12.
Oxid Med Cell Longev ; 2013: 493536, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24066190

RESUMEN

Aconitase, the second enzyme of the tricarboxylic acid cycle encoded by ACO1 in the budding yeast Saccharomyces cerevisiae, catalyzes the conversion of citrate to isocitrate. aco1Δ results in mitochondrial DNA (mtDNA) instability. It has been proposed that Aco1 binds to mtDNA and mediates its maintenance. Here we propose an alternative mechanism to account for mtDNA loss in aco1Δ mutant cells. We found that aco1Δ activated the RTG pathway, resulting in increased expression of genes encoding citrate synthase. By deleting RTG1, RTG3, or genes encoding citrate synthase, mtDNA instability was prevented in aco1Δ mutant cells. Increased activity of citrate synthase leads to iron accumulation in the mitochondria. Mutations in MRS3 and MRS4, encoding two mitochondrial iron transporters, also prevented mtDNA loss due to aco1Δ. Mitochondria are the main source of superoxide radicals, which are converted to H2O2 through two superoxide dismutases, Sod1 and Sod2. H2O2 in turn reacts with Fe(2+) to generate very active hydroxyl radicals. We found that loss of Sod1, but not Sod2, prevents mtDNA loss in aco1Δ mutant cells. We propose that mtDNA loss in aco1Δ mutant cells is caused by the activation of the RTG pathway and subsequent iron citrate accumulation and toxicity.


Asunto(s)
Aconitato Hidratasa/metabolismo , ADN Mitocondrial/genética , Saccharomyces cerevisiae/enzimología , Aconitato Hidratasa/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Microscopía Fluorescente , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
13.
Biochim Biophys Acta ; 1833(12): 2765-2774, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23906793

RESUMEN

In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD.


Asunto(s)
Ácido Acético/farmacología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Rafinosa/farmacología , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Citocromos c/metabolismo , Eliminación de Gen , Glucosa/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Immunoblotting , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Biol Chem ; 288(23): 16986-16997, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23625923

RESUMEN

Target of rapamycin signaling is a conserved, essential pathway integrating nutritional cues with cell growth and proliferation. The target of rapamycin kinase exists in two distinct complexes, TORC1 and TORC2. It has been reported that protein phosphatase 2A (PP2A) and the Far3-7-8-9-10-11 complex (Far complex) negatively regulate TORC2 signaling in yeast. The Far complex, originally identified as factors required for pheromone-induced cell cycle arrest, and PP2A form the yeast counterpart of the STRIPAK complex, which was first isolated in mammals. The cellular localization of the Far complex has yet to be fully characterized. Here, we show that the Far complex localizes to the endoplasmic reticulum (ER) by analyzing functional GFP-tagged Far proteins in vivo. We found that Far9 and Far10, two homologous proteins each with a tail-anchor domain, localize to the ER in mutant cells lacking the other Far complex components. Far3, Far7, and Far8 form a subcomplex, which is recruited to the ER by Far9/10. The Far3-7-8- complex in turn recruits Far11 to the ER. Finally, we show that the tail-anchor domain of Far9 is required for its optimal function in TORC2 signaling. Our study reveals tiered assembly of the yeast Far complex at the ER and a function for Far complex's ER localization in TORC2 signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Retículo Endoplásmico/genética , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Genes (Basel) ; 4(1): 86-100, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24605246

RESUMEN

Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP) binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.

16.
Genetics ; 190(4): 1325-39, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22298706

RESUMEN

The target of rapamycin (TOR) kinase, a central regulator of eukaryotic cell growth, exists in two essential, yet distinct, TOR kinase complexes in the budding yeast Saccharomyces cerevisiae: rapamycin-sensitive TORC1 and rapamycin-insensitive TORC2. Lst8, a component of both TOR complexes, is essential for cell viability. However, it is unclear whether the essential function of Lst8 is linked to TORC1, TORC2, or both. To that end, we carried out a genetic screen to isolate lst8 deletion suppressor mutants. Here we report that mutations in SAC7 and FAR11 suppress lethality of lst8Δ and TORC2-deficient (tor2-21) mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2. More importantly, characterization of lst8Δ bypass mutants reveals a role for protein phosphatase 2A (PP2A) in the regulation of TORC2 signaling. We show that Far11, a member of the Far3-7-8-9-10-11 complex involved in pheromone-induced cell cycle arrest, interacts with Tpd3 and Pph21, conserved components of PP2A, and deletions of components of the Far3-7-8-9-10-11 complex and PP2A rescue growth defects in lst8Δ and tor2-21 mutants. In addition, loss of the regulatory B' subunit of PP2A Rts1 or Far11 restores phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. Mammalian Far11 orthologs FAM40A/B exist in a complex with PP2A known as STRIPAK, suggesting a conserved functional association of PP2A and Far11. Antagonism of TORC2 signaling by PP2A-Far11 represents a novel regulatory mechanism for controlling spatial cell growth of yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Elementos Transponibles de ADN , Activación Enzimática , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Biol Chem ; 286(6): 4620-31, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21127045

RESUMEN

Stp1 and Stp2 are two homologous transcription factors activated in response to extracellular amino acid stimuli. Here we show that both ubiquitin-dependent degradation of Stp1 and Stp2 and their intracellular localization are differentially regulated. We have found that the E2 ubiquitin-conjugating enzyme Cdc34 is required for degradation of both full-length and processed Stp1, but not Stp2. We have also found that Grr1, the F-box component of the SCF(Grr1) E3 ubiquitin ligase, is the primary factor in degradation of full-length Stp1, whereas both Grr1 and Cdc4 are required for degradation of processed Stp1. Our localization studies showed that full-length Stp1 is localized both in the cytoplasm and at the cell periphery, whereas full-length Stp2 is localized only diffusely in the cytoplasm. We identified two nuclear localization signals of Stp1 and found that the N-terminal domain of Stp1 is required for localization of full-length Stp1 to the cell periphery. We also found that Stp2 is the primary factor involved in basal activation of target gene expression. Our results indicate that the functions of two seemingly redundant transcription factors can be separated by differential degradation and distinct cellular localization.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina Proteasas/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Portadoras/genética , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteasas/genética , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Mol Cell Biol ; 28(2): 551-63, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17984223

RESUMEN

Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5. A deletion mutation in GRR1, encoding a component of the SCF(Grr1) E3 ubiquitin ligase, blocks amino acid-induced hyperphosphorylation of Ptr3. We found that two casein kinase I (CKI) proteins, Yck1 and Yck2, previously identified as positive regulators of SPS signaling, are required for hyperphosphorylation of Ptr3. Loss- and gain-of-function mutations in PTR3 result in decreased and increased Ptr3 hyperphosporylation, respectively. We found that a defect in PP2A phosphatase activity leads to the hyperphosphorylation of Ptr3 and constitutive activation of SPS signaling. Two-hybrid analysis revealed interactions between the N-terminal signal transduction domain of Ssy1 with Ptr3 and Yck1. Our findings reveal that CKI and PP2A phosphatase play antagonistic roles in SPS sensing by regulating Ptr3 phosphorylation.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Portadoras/genética , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Proteínas de la Membrana/genética , Mutación/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Annu Rev Genet ; 40: 159-85, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16771627

RESUMEN

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.


Asunto(s)
Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Núcleo Celular/metabolismo , Senescencia Celular/fisiología , ADN Mitocondrial/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Redes y Vías Metabólicas , Mitocondrias/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
20.
J Biol Chem ; 280(52): 42528-35, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16253991

RESUMEN

Retrograde (RTG) signaling senses mitochondrial dysfunction and initiates readjustments of carbohydrate and nitrogen metabolism through nuclear accumulation of the heterodimeric transcription factors, Rtg1/3p. The RTG pathway is also linked to target of rapamycin (TOR) signaling, among whose activities is transcriptional control of nitrogen catabolite repression (NCR)-sensitive genes. To investigate the connections between these two signaling pathways, we have analyzed rapamycin sensitivity of the expression of the RTG target gene CIT2 and of two NCR-sensitive genes, GLN1 and DAL5, in respiratory-competent (rho+) and -incompetent (rho0) yeast cells. Here we have presented evidence that retrograde gene expression is separable from TOR regulation of RTG- and NCR-responsive genes. We showed that expression of these two classes of genes is differentially regulated by glutamate starvation whether in response to mitochondrial dysfunction or induced by rapamycin treatment, as well by glutamine or histidine starvation. We also showed that Lst8p, a component of the TOR1/2 complexes and a negative regulator of the RTG pathway, has multiple roles in the regulation of RTG- and NCR-sensitive genes. Lst8p negatively regulates CIT2 and GLN1 expression, whereas DAL5 expression is independent of Lst8p function. DAL5 expression depends on the GATA transcription factors Gln3p and Gat1p. Gat1p is translocated to the nucleus only upon TOR inhibition by rapamycin. Altogether, these data show that Rtg1/3p, Gln3p, and Gat1p can be differentially regulated through different nutrient-sensing pathways, such as TOR and retrograde signaling, and by multiple factors, such as Lst8p, which is suggested to have a role in connecting the RTG and TOR pathways.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Proteínas de Ciclo Celular/biosíntesis , Regulación Fúngica de la Expresión Génica , Mitocondrias/patología , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Alelos , Northern Blotting , Núcleo Celular/metabolismo , Dimerización , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/química , Proteínas Fluorescentes Verdes/metabolismo , Histidina/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Modelos Genéticos , Mutación , Nitrógeno/química , Plásmidos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA