Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(2): 147-151, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38442929

RESUMEN

OBJECTIVE: To investigate the effects of extracorporeal carbon dioxide removal (ECCO2R) combined with continuous renal replacement therapy (CRRT) on respiratory efficiency and diaphragm function in patients with acute respiratory distress syndrome (ARDS) received mechanical ventilation. METHODS: A prospective randomized controlled study was conducted. Sixty patients with mild to moderate ARDS admitted to the department of respiratory and critical care medicine of Henan Provincial People's Hospital from January 2019 to January 2021 were enrolled, and they were divided into observation group and control group according to the random number table method, with 30 cases in each group. All patients received antibiotics, anti-inflammatory, and mechanical ventilation therapy. On this basis, the observation group received ECCO2R and CRRT, while the control group received bedside CRRT. Baseline data including gender, age, etiology, acute physiology and chronic health evaluation II (APACHE II), etc., were recorded. Arterial blood gas analysis [including arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), and oxygenation index (PaO2/FiO2)] was performed at 12 hours and 24 hours during the treatment, and respiratory mechanics parameters [including tidal volume, respiratory rate, maximum expiratory pressure (MEP), and maximum inspiratory pressure (MIP)] were recorded, and rapid shallow breathing index (RSBI) was calculated. The levels of glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and superoxide dismutase (SOD) in serum were detected by enzyme-linked immunosorbent assay (ELISA). Diaphragm thickness and diaphragm activity were measured by ultrasonography at 24 hours during the treatment. RESULTS: There were no significantly differences in age, gender, etiology, and APACHE II score between the two groups, indicating that the baseline data of the two groups were balanced and comparable. Compared with the 12 hours after treatment, the PaO2 and PaO2/FiO2 in the observation group significantly increased, PaCO2 significantly decreased, RSBI significantly decreased, MEP and MIP significantly increased, and serum GSH-Px and MDA significantly decreased, while SOD significantly increased at 24 hours during the treatment. In the control group, only PaCO2 significantly decreased. Compared with the control group, the PaCO2 significantly decreased in the observation group at 12 hours and 24 hours [mmHg (1 mmHg≈0.133 kPa): 55.05±7.57 vs. 59.49±6.95, 52.77±7.88 vs. 58.25±6.92, both P < 0.05], but no significantly differences in PaO2 and PaO2/FiO2. Compared with the control group, the observation group showed significant decreases in RSBI at 12 hours and 24 hours (times×min-1×L-1: 85.92±8.83 vs. 90.38±3.78, 75.73±3.86 vs. 90.05±3.66, both P < 0.05), significant increases in MEP and MIP [MEP (mmH2O, 1 mmH2O≈0.01 kPa): 86.64±5.99 vs. 83.88±4.18, 93.70±5.59 vs. 85.04±3.73; MIP (mmH2O): 44.19±6.66 vs. 41.17±3.13, 57.52±5.28 vs. 42.34±5.39, all P < 0.05], and significant decreases in serum GSH-Px and MDA [GSH-Px (mg/L): 78.52±8.72 vs. 82.10±3.37, 57.11±4.67 vs. 81.17±5.13; MDA (µmol/L): 7.84±1.97 vs. 8.71±0.83, 3.67±0.78 vs. 8.41±1.09, all P < 0.05], as well as a significant increase in SOD (U/L: 681.85±49.24 vs. 659.40±26.47, 782.32±40.56 vs. 676.65±51.97, both P < 0.05). Compared with the control group, the observation group showed significant increases in diaphragm thickness and diaphragm activity at 24 hours of treatment [diaphragm thickness (cm): 1.93±0.28 vs. 1.40±0.24, diaphragmatic thickening fraction: (0.22±0.04)% vs. (0.19±0.02)%, quiet breathing diaphragm displacement (cm): 1.42±0.13 vs. 1.36±0.06, deep breathing diaphragm displacement (cm): 5.11±0.75 vs. 2.64±0.59, all P < 0.05]. CONCLUSIONS: ECCO2R combined with CRRT can reduce work of breathing and oxidative stress levels in ARDS patients receiving non-invasive ventilation, and protect diaphragm function.


Asunto(s)
Terapia de Reemplazo Renal Continuo , Síndrome de Dificultad Respiratoria , Humanos , Diafragma , Dióxido de Carbono , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/terapia , Superóxido Dismutasa
2.
Nature ; 625(7995): 494-499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233619

RESUMEN

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

3.
Nat Mater ; 23(1): 65-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37563291

RESUMEN

Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate.

4.
Nano Lett ; 23(24): 11510-11516, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085265

RESUMEN

In twisted van der Waals (vdW) bilayers, intrinsic strain associated with the moiré superlattice and unintentionally introduced uniaxial strain may be present simultaneously. Both strains are able to lift the degeneracy of the E2g phonon modes in Raman spectra. Because of the different rotation symmetry of the two types of strain, the corresponding Raman intensity exhibits a distinct polarization dependence. We compare a 2.5° twisted MoS2 bilayer, in which the maximal intrinsic moiré strain is anticipated, and a natural MoS2 bilayer with an intentionally introduced uniaxial strain. By analyzing the frequency shift of the E2g doublet and their polarization dependence, we can not only determine the direction of unintentional uniaxial strain in the twisted bilayer but also quantify both strain components. This simple strain characterization method based on far-field Raman spectra will facilitate the studies of electronic properties of moiré superlattices under the influence of combined intrinsic and external strains.

5.
Nat Commun ; 14(1): 8042, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052844

RESUMEN

The respiratory system, especially the lung, is the key site of pathological injury induced by SARS-CoV-2 infection. Given the low feasibility of targeted delivery of antibodies into the lungs by intravenous administration and the short half-life period of antibodies in the lungs by intranasal or aerosolized immunization, mRNA encoding broadly neutralizing antibodies with lung-targeting capability can perfectly provide high-titer antibodies in lungs to prevent the SARS-CoV-2 infection. Here, we firstly identify a human monoclonal antibody, 8-9D, with broad neutralizing potency against SARS-CoV-2 variants. The neutralization mechanism of this antibody is explained by the structural characteristics of 8-9D Fabs in complex with the Omicron BA.5 spike. In addition, we evaluate the efficacy of 8-9D using a safe and robust mRNA delivery platform and compare the performance of 8-9D when its mRNA is and is not selectively delivered to the lungs. The lung-selective delivery of the 8-9D mRNA enables the expression of neutralizing antibodies in the lungs which blocks the invasion of the virus, thus effectively protecting female K18-hACE2 transgenic mice from challenge with the Beta or Omicron BA.1 variant. Our work underscores the potential application of lung-selective mRNA antibodies in the prevention and treatment of infections caused by circulating SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Femenino , Anticuerpos ampliamente neutralizantes , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes , Ratones Transgénicos , ARN Mensajero/genética , Pulmón , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
6.
ACS Nano ; 17(23): 23814-23828, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038679

RESUMEN

Polyethylene glycol conjugation (PEGylation) is the most successful strategy to promote the stability, pharmacokinetics, and efficacy of therapeutics; however, anti-PEG antibodies induced by repeated treatments raise serious concerns about the future of PEGylated therapeutics. In order to solve the "PEG dilemma", polymers with excellent water solubility and biocompatibility are urgently desired to attenuate the generation of anti-PEG antibodies. Here, poly(ethyl ethylene phosphate) (PEEP) with excellent degradability and stealth effects is used as an alternative to PEG to overcome the "PEG dilemma". PEEPylated liposomes exhibit lower immunogenicity and generate negligible anti-PEEP antibodies (IgM and IgG) after repeated treatments. In vivo studies confirm that PEEPylated liposomes loaded with oxaliplatin (PEEPlipo@OxPt) show better pharmacokinetics compared to PEGlipo@OxPt, and they exhibit potent antitumor performances, which can be further promoted with checkpoint blockade immunotherapy. In addition, PEEPylated lipid nanoparticle is also used to develop an mRNA vaccine with the ability to evoke a potent antigen-specific T cell response and achieve excellent antitumor efficacy. PEEP shows promising potentials in the development of next-generation nanomedicines and vaccines with higher safety and efficacy.


Asunto(s)
Neoplasias , Polietilenglicoles , Humanos , Polietilenglicoles/farmacocinética , Liposomas , Neoplasias/tratamiento farmacológico , Inmunoterapia , Vacunación , Etilenos
7.
JACS Au ; 3(11): 3181-3193, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38034980

RESUMEN

Chemoimmunotherapy can boost strong antitumor immune responses by triggering immunogenic cell death (ICD), which highlights a promising prospect in clinical applications. However, current chemoimmunotherapy shows limited efficacy due to the low delivery efficiency and insufficient immunogenicity of available chemotherapeutic drugs. A supramolecular polymeric nanomedicine (Pt-Tu@NP) is herein reported using cucurbit[7]uril-based host-guest recognition and noncovalent self-assembly. Pt-Tu@NPs have excellent biodistribution and strongly evoke the endoplasmic reticulum stress-mediated ICD of tumor cells, triggering potent antitumor immune responses by promoting dendritic cell (DC) maturation and cytotoxic T cell infiltration. The coordinated butyrate promotes a positive feedback regulation between DCs and CD8+ T cells. Pt-Tu@NPs stimulate immune cold tumors into hot ones, working in synergy with an immune checkpoint blockade to effectively suppress tumor growth and metastasis, which suggests a promising approach for cancer chemoimmunotherapy.

8.
Opt Lett ; 48(21): 5743-5746, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910748

RESUMEN

Phase modulation plays a crucial role in shaping optical fields and physical optics. However, traditional phase modulation techniques are highly dependent on angles and wavelengths, limiting their applicability in smart optical systems. Here, we propose a first-principle theory for achieving constant phase modulation independent of incident angle and wavelength. By utilizing a hyperbolic metamaterial and engineering-specific optical parameters, different reflective phase jumps are achieved and tailored for both transverse electric (TE) and transverse magnetic (TM) waves. The aimed reflection phase difference between TE and TM waves can be thus achieved omnidirectionally and achromatically. As an example, we propose a perfect omnidirectional broadband reflection quarter wave plate. This work provides fundamental insights into manipulating optical phases through optical parameter engineering.

9.
Acta Biomater ; 168: 565-579, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481192

RESUMEN

Nanomedicines combining multimodal therapeutic modalities supply opportunities to eliminate tumors in a safe and efficient manner. However, the rigid encapsulation and covalent conjugation of different therapeutic reagents suffer from the complicated preparation process, premature drug leakage and severe adverse events. Herein, we report a self-enhanced supramolecular nanomedicine (SND) based on the host-guest molecular recognition between ß-cyclodextrin (ß-CD) and camptothecin (CPT) for trimodal synergistic chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT) using a single 670 nm near-infrared (NIR) laser. Thioketal bond and polyethylene glycol (PEG) segment are introduced into the structure of CPT-tk-PEG prodrug, thus the premature release of CPT is efficiently inhibited and the specific drug release is realized at tumor site where singlet oxygen (1O2)-generated PDT is performed. A boron dipyrromethene (BODIPY) theranostic agent is anchored onto ß-CD, endowing SND with capabilities of fluorescence imaging, PDT and PTT. Benefiting from the supramolecular assembly, not only the solubility of CPT is improved by 40 times, but also the blood circulation time and tumor accumulation of SND are greatly promoted. In vivo, SND can effectively induce the immunogenic cell death (ICD) of tumor cells, thus performing prominent inhibition against both primary and distal tumors, and even anti-metastasis effect against liver without causing obvious systemic toxicity. STATEMENT OF SIGNIFICANCE: Although nanomedicines supply opportunities to eliminate tumors in an efficient manner, they usually suffer from premature drug leakage, complicated preparation process and severe side effects owing to the rigid encapsulation or covalent conjugation. Based on the host-guest molecular recognition, we developed a self-enhanced SND for synergistic chemotherapy, photodynamic therapy and photothermal therapy. Introduction of thioketal bond in CPT prodrug avoided the premature drug release, and the specific drug release was realized in the tumor cells. Profiting from the facile supramolecular assembly strategy, SND not only displayed a primary anticancer efficacy with a low systemic toxicity, but also efficiently inhibited the growth of distal tumors, contributing a vaccine-like function to eradicate the recurrent and metastatic tumors.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Profármacos , Humanos , Fotoquimioterapia/métodos , Nanomedicina , Profármacos/uso terapéutico , Neoplasias/tratamiento farmacológico , Oxígeno Singlete , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Nanopartículas/química
10.
Nat Commun ; 13(1): 4981, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068198

RESUMEN

Lactate is a key metabolite produced from glycolytic metabolism of glucose molecules, yet it also serves as a primary carbon fuel source for many cell types. In the tumor-immune microenvironment, effect of lactate on cancer and immune cells can be highly complex and hard to decipher, which is further confounded by acidic protons, a co-product of glycolysis. Here we show that lactate is able to increase stemness of CD8+ T cells and augments anti-tumor immunity. Subcutaneous administration of sodium lactate but not glucose to mice bearing transplanted MC38 tumors results in CD8+ T cell-dependent tumor growth inhibition. Single cell transcriptomics analysis reveals increased proportion of stem-like TCF-1-expressing CD8+ T cells among intra-tumoral CD3+ cells, a phenotype validated by in vitro lactate treatment of T cells. Mechanistically, lactate inhibits histone deacetylase activity, which results in increased acetylation at H3K27 of the Tcf7 super enhancer locus, leading to increased Tcf7 gene expression. CD8+ T cells in vitro pre-treated with lactate efficiently inhibit tumor growth upon adoptive transfer to tumor-bearing mice. Our results provide evidence for an intrinsic role of lactate in anti-tumor immunity independent of the pH-dependent effect of lactic acid, and might advance cancer immune therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Línea Celular Tumoral , Glucólisis , Ácido Láctico/metabolismo , Ratones , Neoplasias/patología , Microambiente Tumoral
11.
Cell Rep Med ; 3(3): 100554, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492873

RESUMEN

Mutations in STK11/LKB1 in non-small cell lung cancer (NSCLC) are associated with poor patient responses to immune checkpoint blockade (ICB), and introduction of a Stk11/Lkb1 (L) mutation into murine lung adenocarcinomas driven by mutant Kras and Trp53 loss (KP) resulted in an ICB refractory syngeneic KPL tumor. Mechanistically this occurred because KPL mutant NSCLCs lacked TCF1-expressing CD8 T cells, a phenotype recapitulated in human STK11/LKB1 mutant NSCLCs. Systemic inhibition of Axl results in increased type I interferon secretion from dendritic cells that expanded tumor-associated TCF1+PD-1+CD8 T cells, restoring therapeutic response to PD-1 ICB in KPL tumors. This was observed in syngeneic immunocompetent mouse models and in humanized mice bearing STK11/LKB1 mutant NSCLC human tumor xenografts. NSCLC-affected individuals with identified STK11/LKB1 mutations receiving bemcentinib and pembrolizumab demonstrated objective clinical response to combination therapy. We conclude that AXL is a critical targetable driver of immune suppression in STK11/LKB1 mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Receptor de Muerte Celular Programada 1/genética , Proteínas Serina-Treonina Quinasas/genética , Tirosina Quinasa del Receptor Axl
12.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35623658

RESUMEN

BACKGROUND: Cancer vaccines are able to achieve tumor-specific immune editing in early-phase clinical trials. However, the infiltration of cytotoxic T cells into immune-deserted tumors is still a major limiting factor. An optimized vaccine approach to induce antigen-specific T cells that can perform robust tumor infiltration is important to accelerate their clinical translation. We previously developed a STING-activating PC7A nanovaccine that produces a strong anti-tumor T cell response on subcutaneous injection. This study systematically investigated the impact of administration methods on the performance of nanovaccines. METHODS: Tumor growth inhibition by intratumoral delivery and subcutaneous delivery of nanovaccine was investigated in TC-1 human papillomavirus-induced cancer model and B16-OVA melanoma model. Nanovaccine distribution in vivo was detected by clinical camera imaging, systemic T cell activation and tumor infiltration were tested by in vivo cytotoxicity killing assay and flow cytometry. For mechanism analysis, T cell recruitment was investigated by in vivo migration blocking assay, multiplex chemokine array, flow cytometry, RT-qPCR, chemotaxis assay and gene knockout mice. RESULTS: Nanovaccine administration was found to alter T cell production and infiltration in tumors. Intratumoral delivery of nanovaccines displayed superior antitumor effects in multiple tumor models compared with subcutaneous delivery. Mechanistic investigation revealed that intratumoral administration of the nanovaccine significantly increased the infiltration of antigen-specific T cells in TC-1 tumors, despite the lower systemic levels of T cells compared with subcutaneous injection. The inhibition of tumor growth by nanovaccines is primarily dependent on CD8+ cytotoxic T cells. Nanovaccine accumulation in tumors upregulates CXCL9 expression in myeloid cells in a STING dependent manner, leading to increased recruitment of IFNγ-expressing CD8+ T cells from the periphery, and IFNγ reciprocally stimulates CXCL9 expression in myeloid cells, resulting in positive feedback between myeloid-CXCL9 and T cell-IFNγ to promote T cell recruitment. However, the STING agonist alone could not sustain this effect in the presence of a systemic deficiency in antigen-specific T cells. CONCLUSIONS: Our results demonstrate that intratumoral administration of PC7A nanovaccine achieved stronger antitumor immunity and efficacy over subcutaneous injection. These data suggest intratumoral administration should be included in the therapeutic design in the clinical use of nanovaccine.


Asunto(s)
Vacunas contra el Cáncer , Melanoma Experimental , Nanopartículas , Animales , Linfocitos T CD8-positivos , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Melanoma Experimental/terapia , Ratones
13.
Clin Cancer Res ; 28(13): 2923-2937, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35320358

RESUMEN

PURPOSE: Efforts have been devoted to select eligible candidates for PD-1/PD-L1 immune checkpoint blocker (ICB) immunotherapy. Here, we have a serendipitous finding of positron emission tomography (PET) imaging tracer 2-[18F]FDG as a potential immunomodulator. Therefore, we hypothesize that 2-[18F]FDG could induce PD-L1 expression change and create an immune-favorable microenvironment for tumor immunotherapy. EXPERIMENTAL DESIGN: We designed a series of assays to verify PD-L1 upregulation, and tested immunotherapy regimens based on 2-[18F]FDG and anti-PD-L1 mAb, as monotherapy and in combination, in fully immunocompetent mice of MC38 and CT26 models. PD-L1 expression and tumor microenvironment (TME) changes were analyzed by Western blot, transcriptomics study, and flow-cytometric analysis. RESULTS: PD-L1 was upregulated in a time- and dose-dependent manner after being induced by 2-[18F]FDG. The activation of NF-κB/IRF3 pathway and STAT1/3-IRF1 pathway play crucial parts in modulating PD-L1 expression after DNA damage and repair. Improved αPD-L1 mAb utilization rate and significant tumor growth delay were observed when the personalized therapeutic alliance of 2-[18F]FDG stimulation and ICB was used. In addition, combination of 2-[18F]FDG with αPD-L1 mAb could reprogram a TME from "cold" to "hot," to make low immunoactivity tumors sensitive to ICB therapy. CONCLUSIONS: In summary, this promising paradigm has the potential to expand the traditional tumor theranostics. 2-[18F]FDG-based ICB immunotherapy is highly significant in enhancing antitumor effect. A research of 2-[18F]FDG-based ICB immunotherapy has been proposed to enhance the antitumor effect.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Animales , Antígeno B7-H1 , Línea Celular Tumoral , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Tomografía de Emisión de Positrones , Microambiente Tumoral
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35022217

RESUMEN

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Endosomas/metabolismo , SARS-CoV-2 , Nexinas de Clasificación/química , COVID-19/virología , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Endocitosis , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Homeostasis , Humanos , Lentivirus , Lisosomas/metabolismo , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Nexinas de Clasificación/metabolismo , Internalización del Virus
15.
Angew Chem Int Ed Engl ; 60(50): 26320-26326, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661332

RESUMEN

Herein, we report that genetically programmable fusion cellular vesicles (Fus-CVs) displaying high-affinity SIRPα variants and PD-1 can activate potent antitumor immunity through both innate and adaptive immune effectors. Dual-blockade of CD47 and PD-L1 with Fus-CVs significantly increases the phagocytosis of cancer cells by macrophages, promotes antigen presentation, and activates antitumor T-cell immunity. Moreover, the bispecific targeting design of Fus-CVs ensures better targeting on tumor cells, but less on other cells, which reduces systemic side effects and enhances therapeutic efficacies. In malignant melanoma and mammary carcinoma models, we demonstrate that Fus-CVs significantly improve overall survival of model animals by inhibiting post-surgery tumor recurrence and metastasis. The Fus-CVs are suitable for protein display by genetic engineering. These advantages, integrated with other unique properties inherited from source cells, make Fus-CVs an attractive platform for multi-targeting immune checkpoint blockade therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoterapia , Neoplasias/terapia , Proteínas Recombinantes de Fusión/inmunología , Animales , Antígeno B7-H1/inmunología , Antígeno CD47/inmunología , Línea Celular Tumoral , Femenino , Ratones , Neoplasias/inmunología , Proteínas Recombinantes de Fusión/genética
16.
Sci Immunol ; 6(59)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963060

RESUMEN

The inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in Casp1-/- mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice. To map out which molecule in the inflammasome pathway contributed to this resistant, we investigated the antitumor effect of radiation in several inflammasome-deficient mice. Tumors grown in either Aim2-/- or Nlrp3-/- mice remained sensitive to radiation, like WT mice, whereas Aim2-/-Nlrp3-/- mice showed radioresistance. Mechanistically, extracellular vesicles (EVs) and EV-free supernatant derived from irradiated tumors activated both Aim2 and Nlrp3 inflammasomes in macrophages, leading to the production of interleukin-1ß (IL-1ß). IL-1ß treatment helped overcome the radioresistance of tumors growing in Casp1-/- and Aim2-/-Nlrp3-/- mice. IL-1 signaling in dendritic cells (DCs) promoted radiation-induced antitumor immunity by enhancing the cross-priming activity of DCs. Overall, we demonstrated that radiation-induced activation of the AIM2 and NLRP3 inflammasomes coordinate to induce some of the antitumor effects of radiation by triggering IL-1 signaling in DCs, leading to their activation and cross-priming.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Neoplasias/inmunología , Neoplasias/radioterapia , Animales , Linfocitos T CD8-positivos/inmunología , Caspasa 1/genética , Células Cultivadas , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Células Dendríticas/inmunología , Femenino , Inflamasomas/genética , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neoplasias/patología , Tolerancia a Radiación
17.
Nat Commun ; 12(1): 2768, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986267

RESUMEN

As a potent lymphocyte activator, interleukin-2 (IL-2) is an FDA-approved treatment for multiple metastatic cancers. However, its clinical use is limited by short half-life, low potency, and severe in vivo toxicity. Current IL-2 engineering strategies exhibit evidence of peripheral cytotoxicity. Here, we address these issues by engineering an IL-2 prodrug (ProIL2). We mask the activity of a CD8 T cell-preferential IL-2 mutein/Fc fusion protein with IL2 receptor beta linked to a tumor-associated protease substrate. ProIL2 restores activity after cleavage by tumor-associated enzymes, and preferentially activates inside tumors, where it expands antigen-specific CD8 T cells. This significantly reduces IL-2 toxicity and mortality without compromising antitumor efficacy. ProIL2 also overcomes resistance of cancers to immune checkpoint blockade. Lastly, neoadjuvant ProIL2 treatment can eliminate metastatic cancer through an abscopal effect. Taken together, our approach presents an effective tumor targeting therapy with reduced toxicity.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/inmunología , Interleucina-2/farmacología , Neoplasias/tratamiento farmacológico , Profármacos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoterapia/métodos , Interleucina-2/efectos adversos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfotoxina-alfa/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología
18.
Sci Transl Med ; 13(582)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627484

RESUMEN

Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.


Asunto(s)
Células Precursoras Eritroides , Neoplasias , Inmunidad Adaptativa , Animales , Humanos , Inmunoterapia , Ratones , Proteínas del Tejido Nervioso
19.
Cancer Cell ; 39(1): 96-108.e6, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33338425

RESUMEN

Increased neoantigens in hypermutated cancers with DNA mismatch repair deficiency (dMMR) are proposed as the major contributor to the high objective response rate in anti-PD-1 therapy. However, the mechanism of drug resistance is not fully understood. Using tumor models defective in the MMR gene Mlh1 (dMLH1), we show that dMLH1 tumor cells accumulate cytosolic DNA and produce IFN-ß in a cGAS-STING-dependent manner, which renders dMLH1 tumors slowly progressive and highly sensitive to checkpoint blockade. In neoantigen-fixed models, dMLH1 tumors potently induce T cell priming and lose resistance to checkpoint therapy independent of tumor mutational burden. Accordingly, loss of STING or cGAS in tumor cells decreases tumor infiltration of T cells and endows resistance to checkpoint blockade. Clinically, downregulation of cGAS/STING in human dMMR cancers correlates with poor prognosis. We conclude that DNA sensing within tumor cells is essential for dMMR-triggered anti-tumor immunity. This study provides new mechanisms and biomarkers for anti-dMMR-cancer immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de la Membrana/genética , Homólogo 1 de la Proteína MutL/deficiencia , Neoplasias/genética , Nucleotidiltransferasas/genética , Animales , Línea Celular Tumoral , Reparación de la Incompatibilidad de ADN , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nucleotidiltransferasas/metabolismo , Pronóstico , Transducción de Señal/efectos de los fármacos
20.
Oncogene ; 40(5): 885-898, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288883

RESUMEN

Recently, immune checkpoint blockade (ICB), especially anti-programmed death 1 (anti-PD-1) and anti-programmed death-ligand 1 (anti-PD-L1) therapy, has become an increasingly appealing therapeutic strategy for cancer patients. However, only a small portion of patients responds to anti-PD treatment. Therefore, treatment strategies are urgently needed to reverse the ICB-resistant tumor microenvironment (TME). It has become clear that the TME has diminished innate sensing that is critical to activate adaptive immunity. In addition, tumor cells upregulate various immunosuppressive factors to diminish the immune response and resist immunotherapy. In this review, we briefly update the current small molecular drugs that could synergize with immunotherapy, especially anti-PD therapy. We will discuss the modes of action by those drugs including inducing innate sensing and limiting immunosuppressive factors in the TME.


Asunto(s)
Antígeno B7-H1/genética , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...